19,708 research outputs found

    Statistical analysis on high-dimensional spheres and shape spaces

    Full text link
    We consider the statistical analysis of data on high-dimensional spheres and shape spaces. The work is of particular relevance to applications where high-dimensional data are available--a commonly encountered situation in many disciplines. First the uniform measure on the infinite-dimensional sphere is reviewed, together with connections with Wiener measure. We then discuss densities of Gaussian measures with respect to Wiener measure. Some nonuniform distributions on infinite-dimensional spheres and shape spaces are introduced, and special cases which have important practical consequences are considered. We focus on the high-dimensional real and complex Bingham, uniform, von Mises-Fisher, Fisher-Bingham and the real and complex Watson distributions. Asymptotic distributions in the cases where dimension and sample size are large are discussed. Approximations for practical maximum likelihood based inference are considered, and in particular we discuss an application to brain shape modeling.Comment: Published at http://dx.doi.org/10.1214/009053605000000264 in the Annals of Statistics (http://www.imstat.org/aos/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Recursive Estimation of Orientation Based on the Bingham Distribution

    Full text link
    Directional estimation is a common problem in many tracking applications. Traditional filters such as the Kalman filter perform poorly because they fail to take the periodic nature of the problem into account. We present a recursive filter for directional data based on the Bingham distribution in two dimensions. The proposed filter can be applied to circular filtering problems with 180 degree symmetry, i.e., rotations by 180 degrees cannot be distinguished. It is easily implemented using standard numerical techniques and suitable for real-time applications. The presented approach is extensible to quaternions, which allow tracking arbitrary three-dimensional orientations. We evaluate our filter in a challenging scenario and compare it to a traditional Kalman filtering approach

    Minimum mean square distance estimation of a subspace

    Get PDF
    We consider the problem of subspace estimation in a Bayesian setting. Since we are operating in the Grassmann manifold, the usual approach which consists of minimizing the mean square error (MSE) between the true subspace UU and its estimate U^\hat{U} may not be adequate as the MSE is not the natural metric in the Grassmann manifold. As an alternative, we propose to carry out subspace estimation by minimizing the mean square distance (MSD) between UU and its estimate, where the considered distance is a natural metric in the Grassmann manifold, viz. the distance between the projection matrices. We show that the resulting estimator is no longer the posterior mean of UU but entails computing the principal eigenvectors of the posterior mean of UUTU U^{T}. Derivation of the MMSD estimator is carried out in a few illustrative examples including a linear Gaussian model for the data and a Bingham or von Mises Fisher prior distribution for UU. In all scenarios, posterior distributions are derived and the MMSD estimator is obtained either analytically or implemented via a Markov chain Monte Carlo simulation method. The method is shown to provide accurate estimates even when the number of samples is lower than the dimension of UU. An application to hyperspectral imagery is finally investigated

    Near-Optimal Algorithms for Differentially-Private Principal Components

    Full text link
    Principal components analysis (PCA) is a standard tool for identifying good low-dimensional approximations to data in high dimension. Many data sets of interest contain private or sensitive information about individuals. Algorithms which operate on such data should be sensitive to the privacy risks in publishing their outputs. Differential privacy is a framework for developing tradeoffs between privacy and the utility of these outputs. In this paper we investigate the theory and empirical performance of differentially private approximations to PCA and propose a new method which explicitly optimizes the utility of the output. We show that the sample complexity of the proposed method differs from the existing procedure in the scaling with the data dimension, and that our method is nearly optimal in terms of this scaling. We furthermore illustrate our results, showing that on real data there is a large performance gap between the existing method and our method.Comment: 37 pages, 8 figures; final version to appear in the Journal of Machine Learning Research, preliminary version was at NIPS 201

    Numerical study of Bingham flow in macrosopic two dimensional heterogenous porous media

    Full text link
    The flow of non-Newtonian fluids is ubiquitous in many applications in the geological and industrial context. We focus here on yield stress fluids (YSF), i.e. a material that requires minimal stress to flow. We study numerically the flow of yield stress fluids in 2D porous media on a macroscopic scale in the presence of local heterogeneities. As with the microscopic problem, heterogeneities are of crucial importance because some regions will flow more easily than others. As a result, the flow is characterized by preferential flow paths with fractal features. These fractal properties are characterized by different scale exponents that will be determined and analyzed. One of the salient features of these results is that these exponents seem to be independent of the amplitude of heterogeneities for a log-normal distribution. In addition, these exponents appear to differ from those at the microscopic level, illustrating the fact that, although similar, the two scales are governed by different sets of equations

    Exact Hausdorff measure on the boundary of a Galton--Watson tree

    Full text link
    A necessary and sufficient condition for the almost sure existence of an absolutely continuous (with respect to the branching measure) exact Hausdorff measure on the boundary of a Galton--Watson tree is obtained. In the case where the absolutely continuous exact Hausdorff measure does not exist almost surely, a criterion which classifies gauge functions ϕ\phi according to whether ϕ\phi-Hausdorff measure of the boundary minus a certain exceptional set is zero or infinity is given. Important examples are discussed in four additional theorems. In particular, Hawkes's conjecture in 1981 is solved. Problems of determining the exact local dimension of the branching measure at a typical point of the boundary are also solved.Comment: Published at http://dx.doi.org/10.1214/009117906000000629 in the Annals of Probability (http://www.imstat.org/aop/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Flexible Bayesian Dynamic Modeling of Correlation and Covariance Matrices

    Full text link
    Modeling correlation (and covariance) matrices can be challenging due to the positive-definiteness constraint and potential high-dimensionality. Our approach is to decompose the covariance matrix into the correlation and variance matrices and propose a novel Bayesian framework based on modeling the correlations as products of unit vectors. By specifying a wide range of distributions on a sphere (e.g. the squared-Dirichlet distribution), the proposed approach induces flexible prior distributions for covariance matrices (that go beyond the commonly used inverse-Wishart prior). For modeling real-life spatio-temporal processes with complex dependence structures, we extend our method to dynamic cases and introduce unit-vector Gaussian process priors in order to capture the evolution of correlation among components of a multivariate time series. To handle the intractability of the resulting posterior, we introduce the adaptive Δ\Delta-Spherical Hamiltonian Monte Carlo. We demonstrate the validity and flexibility of our proposed framework in a simulation study of periodic processes and an analysis of rat's local field potential activity in a complex sequence memory task.Comment: 49 pages, 15 figure
    • 

    corecore