4,385 research outputs found

    The Perfect Binary One-Error-Correcting Codes of Length 15: Part II--Properties

    Full text link
    A complete classification of the perfect binary one-error-correcting codes of length 15 as well as their extensions of length 16 was recently carried out in [P. R. J. \"Osterg{\aa}rd and O. Pottonen, "The perfect binary one-error-correcting codes of length 15: Part I--Classification," IEEE Trans. Inform. Theory vol. 55, pp. 4657--4660, 2009]. In the current accompanying work, the classified codes are studied in great detail, and their main properties are tabulated. The results include the fact that 33 of the 80 Steiner triple systems of order 15 occur in such codes. Further understanding is gained on full-rank codes via switching, as it turns out that all but two full-rank codes can be obtained through a series of such transformations from the Hamming code. Other topics studied include (non)systematic codes, embedded one-error-correcting codes, and defining sets of codes. A classification of certain mixed perfect codes is also obtained.Comment: v2: fixed two errors (extension of nonsystematic codes, table of coordinates fixed by symmetries of codes), added and extended many other result

    Counting Steiner triple systems with classical parameters and prescribed rank

    Full text link
    By a famous result of Doyen, Hubaut and Vandensavel \cite{DHV}, the 2-rank of a Steiner triple system on 2n−12^n-1 points is at least 2n−1−n2^n -1 -n, and equality holds only for the classical point-line design in the projective geometry PG(n−1,2)PG(n-1,2). It follows from results of Assmus \cite{A} that, given any integer tt with 1≤t≤n−11 \leq t \leq n-1, there is a code Cn,tC_{n,t} containing representatives of all isomorphism classes of STS(2n−1)(2^n-1) with 2-rank at most 2n−1−n+t2^n -1 -n + t. Using a mixture of coding theoretic, geometric, design theoretic and combinatorial arguments, we prove a general formula for the number of distinct STS(2n−1)(2^n-1) with 2-rank at most 2n−1−n+t2^n -1 -n + t contained in this code. This generalizes the only previously known cases, t=1t=1, proved by Tonchev \cite{T01} in 2001, t=2t=2, proved by V. Zinoviev and D. Zinoviev \cite{ZZ12} in 2012, and t=3t=3 (V. Zinoviev and D. Zinoviev \cite{ZZ13}, \cite{ZZ13a} (2013), D. Zinoviev \cite{Z16} (2016)), while also unifying and simplifying the proofs. This enumeration result allows us to prove lower and upper bounds for the number of isomorphism classes of STS(2n−1)(2^n-1) with 2-rank exactly (or at most) 2n−1−n+t2^n -1 -n + t. Finally, using our recent systematic study of the ternary block codes of Steiner triple systems \cite{JT}, we obtain analogous results for the ternary case, that is, for STS(3n)(3^n) with 3-rank at most (or exactly) 3n−1−n+t3^n -1 -n + t. We note that this work provides the first two infinite families of 2-designs for which one has non-trivial lower and upper bounds for the number of non-isomorphic examples with a prescribed pp-rank in almost the entire range of possible ranks.Comment: 27 page

    Efficient Two-Stage Group Testing Algorithms for Genetic Screening

    Full text link
    Efficient two-stage group testing algorithms that are particularly suited for rapid and less-expensive DNA library screening and other large scale biological group testing efforts are investigated in this paper. The main focus is on novel combinatorial constructions in order to minimize the number of individual tests at the second stage of a two-stage disjunctive testing procedure. Building on recent work by Levenshtein (2003) and Tonchev (2008), several new infinite classes of such combinatorial designs are presented.Comment: 14 pages; to appear in "Algorithmica". Part of this work has been presented at the ICALP 2011 Group Testing Workshop; arXiv:1106.368

    The order of the automorphism group of a binary qq-analog of the Fano plane is at most two

    Get PDF
    It is shown that the automorphism group of a binary qq-analog of the Fano plane is either trivial or of order 22.Comment: 10 page

    Coding Theory and Algebraic Combinatorics

    Full text link
    This chapter introduces and elaborates on the fruitful interplay of coding theory and algebraic combinatorics, with most of the focus on the interaction of codes with combinatorial designs, finite geometries, simple groups, sphere packings, kissing numbers, lattices, and association schemes. In particular, special interest is devoted to the relationship between codes and combinatorial designs. We describe and recapitulate important results in the development of the state of the art. In addition, we give illustrative examples and constructions, and highlight recent advances. Finally, we provide a collection of significant open problems and challenges concerning future research.Comment: 33 pages; handbook chapter, to appear in: "Selected Topics in Information and Coding Theory", ed. by I. Woungang et al., World Scientific, Singapore, 201
    • …
    corecore