34 research outputs found

    Etude mathématique et numérique de quelques généralisations de l'équation de Cahn-Hilliard : Applications a la retouche d'images et a la biologie.

    Get PDF
    This thesis is situated in the context of the theoretical and numerical analysis of some generalizations of the Cahn–Hilliard equation. We study the well-possedness of these models, as well as the asymptotic behavior in terms of the existence of finite-dimenstional (in the sense of the fractal dimension) attractors. The first part of this thesis is devoted to some models which, in particular, have applications in image inpainting. We start by the study of the dynamics of the Bertozzi–Esedoglu–Gillette–Cahn–Hilliard equation with Neumann boundary conditions and a regular nonlinearity. We give numerical simulations with a fast numerical scheme with threshold which is sufficient to obtain good inpainting results. Furthermore, we study this model with Neumann boundary conditions and a logarithmic nonlinearity and we also give numerical simulations which confirm that the results obtained with a logarithmic non- linearity are better than the ones obtained with a polynomial nonlinearity. Finally, we propose a model based on the Cahn–Hilliard system which has applications in color image inpainting. The second part of this thesis is devoted to some models which, in particular, have applications in biologie and chemistry. We study the convergence of the solution of a Cahn–Hilliard equation with a proliferation term and associated with Neumann boundary conditions and a regular nonlinearity. In that case, we prove that the solutions blow up in finite time or exist globally in time. Furthermore, we give numericial simulations which confirm the theoritical results. We end with the study of the Cahn–Hilliard equation with a mass source and a regular nonlinearity. In this study, we consider both Neumann and Dirichlet boundary conditions.Cette thèse se situe dans le cadre de l’analyse théorique et numérique de quelques généralisations de l’équation de Cahn–Hilliard. On étudie l’existence, l’unicité et la régularité de la solution de ces modèles ainsi que son comportement asymptotique en terme d’existence d’un attracteur global de dimension fractale finie. La première partie de la thèse concerne des modèles appliqués à la retouche d’images. D’abord, on étudie la dynamique de l’équation de Bertozzi–Esedoglu–Gillette–Cahn–Hilliard avec des conditions de type Neumann sur le bord et une nonlinéarité régulière de type polynomial et on propose un schéma numérique avec une méthode de seuil efficace pour le problème de la retouche et très rapide en terme de temps de convergence. Ensuite, on étudie ce modèle avec des conditions de type Neumann sur le bord et une nonlinéarité singulière de type logarithmique et on donne des simulations numériques avec seuil qui confirment que les résultats obtenus avec une nonlinéarité de type logarithmique sont meilleurs que ceux obtenus avec une nonlinéarité de type polynomial. Finalement, on propose un modèle basé sur le système de Cahn–Hilliard pour la retouche d’images colorées. La deuxième partie de la thèse est consacrée à des applications en biologie et en chimie. On étudie la convergence de la solution d’une généralisation de l’équation de Cahn–Hilliard avec un terme de prolifération, associée à des conditions aux limites de type Neumann et une nonlinéarité régulière. Dans ce cas, on démontre que soit la solution explose en temps fini soit elle existe globalement en temps. Par ailleurs, on donne des simulations numériques qui confirment les résultats théoriques obtenus. On termine par l’étude de l’équation de Cahn–Hilliard avec un terme source et une nonlinéarité régulière. Dans cette étude, on considère le modèle à la fois avec des conditions aux limites de type Neumann et de type Dirichlet

    Fast Solvers for Cahn-Hilliard Inpainting

    Get PDF
    We consider the efficient solution of the modified Cahn-Hilliard equation for binary image inpainting using convexity splitting, which allows an unconditionally gradient stable time-discretization scheme. We look at a double-well as well as a double obstacle potential. For the latter we get a nonlinear system for which we apply a semi-smooth Newton method combined with a Moreau-Yosida regularization technique. At the heart of both methods lies the solution of large and sparse linear systems. We introduce and study block-triangular preconditioners using an efficient and easy to apply Schur complement approximation. Numerical results indicate that our preconditioners work very well for both problems and show that qualitatively better results can be obtained using the double obstacle potential

    Cahn--Hilliard inpainting with the double obstacle potential

    Get PDF
    The inpainting of damaged images has a wide range of applications, and many different mathematical methods have been proposed to solve this problem. Inpainting with the help of Cahn{Hilliard models has been particularly successful, and it turns out that Cahn{Hilliard inpainting with the double obstacle potential can lead to better results compared to inpainting with a smooth double well potential. However, a mathematical analysis of this approach is missing so far. In this paper we give first analytical results for a Cahn--Hilliard double obstacle inpainting model regarding existence of global solutions to the time-dependent problem and stationary solutions to the time-independent problem without constraints on the parameters involved. With the help of numerical results we show the effectiveness of the approach for binary and grayscale images

    Applications of PDEs inpainting to magnetic particle imaging and corneal topography

    Get PDF
    In this work we propose a novel application of Partial Differential Equations (PDEs) inpainting techniques to two medical contexts. The first one concerning recovering of concentration maps for superparamagnetic nanoparticles, used as tracers in the framework of Magnetic Particle Imaging. The analysis is carried out by two set of simulations, with and without adding a source of noise, to show that the inpainted images preserve the main properties of the original ones. The second medical application is related to recovering data of corneal elevation maps in ophthalmology. A new procedure consisting in applying the PDEs inpainting techniques to the radial curvature image is proposed. The images of the anterior corneal surface are properly recovered to obtain an approximation error of the required precision. We compare inpainting methods based on second, third and fourth-order PDEs with standard approximation and interpolation techniques

    Long-time behavior of a nonlocal Cahn-Hilliard equation with reaction

    Full text link
    In this paper we study the long-time behavior of a nonlocal Cahn-Hilliard system with singular potential, degenerate mobility, and a reaction term. In particular, we prove the existence of a global attractor with finite fractal dimension, the existence of an exponential attractor, and convergence to equilibria for two physically relevant classes of reaction terms

    Higher-order generalized Cahn–Hilliard equations

    Get PDF
    Our aim in this paper is to study higher-order (in space) anisotropic generalized Cahn–Hilliard models. In particular, we obtain well-posedness results, as well as the existence of the global attractor. Such models can have applications in biology, image processing, etc. We also give numerical simulations which illustrate the effects of the higher-order terms on the anisotropy

    A DOUBLY SPLITTING SCHEME FOR THE CAGINALP SYSTEM WITH SINGULAR POTENTIALS AND DYNAMIC BOUNDARY CONDITIONS

    Get PDF
    We propose a time semi-discrete scheme for the Caginalp phase-field system with singular potentials and dynamic boundary conditions. The scheme is based on a time splitting which decouples the equations and on a convex splitting of the energy associated to the problem. The scheme is unconditionally uniquely solvable and the energy is nonincreasing if the time step is small enough. The discrete solution is shown to converge to the energy solution of the problem as the time step tends to 0. The proof involves a multivalued operator and a monotonicity argument. This approach allows us to compute numerically singular solutions to the problem
    corecore