1,315 research outputs found

    pTNoC: Probabilistically time-analyzable tree-based NoC for mixed-criticality systems

    Get PDF
    The use of networks-on-chip (NoC) in real-time safety-critical multicore systems challenges deriving tight worst-case execution time (WCET) estimates. This is due to the complexities in tightly upper-bounding the contention in the access to the NoC among running tasks. Probabilistic Timing Analysis (PTA) is a powerful approach to derive WCET estimates on relatively complex processors. However, so far it has only been tested on small multicores comprising an on-chip bus as communication means, which intrinsically does not scale to high core counts. In this paper we propose pTNoC, a new tree-based NoC design compatible with PTA requirements and delivering scalability towards medium/large core counts. pTNoC provides tight WCET estimates by means of asymmetric bandwidth guarantees for mixed-criticality systems with negligible impact on average performance. Finally, our implementation results show the reduced area and power costs of the pTNoC.The research leading to these results has received funding from the European Community’s Seventh Framework Programme [FP7/2007-2013] under the PROXIMA Project (www.proxima-project.eu), grant agreement no 611085. This work has also been partially supported by the Spanish Ministry of Science and Innovation under grant TIN2015-65316-P and the HiPEAC Network of Excellence. Mladen Slijepcevic is funded by the Obra Social Fundación la Caixa under grant Doctorado “la Caixa” - Severo Ochoa. Carles Hern´andez is jointly funded by the Spanish Ministry of Economy and Competitiveness (MINECO) and FEDER funds through grant TIN2014-60404-JIN. Jaume Abella has been partially supported by the MINECO under Ramon y Cajal postdoctoral fellowship number RYC-2013-14717.Peer ReviewedPostprint (author's final draft

    Evaluating Cache Coherent Shared Virtual Memory for Heterogeneous Multicore Chips

    Full text link
    The trend in industry is towards heterogeneous multicore processors (HMCs), including chips with CPUs and massively-threaded throughput-oriented processors (MTTOPs) such as GPUs. Although current homogeneous chips tightly couple the cores with cache-coherent shared virtual memory (CCSVM), this is not the communication paradigm used by any current HMC. In this paper, we present a CCSVM design for a CPU/MTTOP chip, as well as an extension of the pthreads programming model, called xthreads, for programming this HMC. Our goal is to evaluate the potential performance benefits of tightly coupling heterogeneous cores with CCSVM

    On the tailoring of CAST-32A certification guidance to real COTS multicore architectures

    Get PDF
    The use of Commercial Off-The-Shelf (COTS) multicores in real-time industry is on the rise due to multicores' potential performance increase and energy reduction. Yet, the unpredictable impact on timing of contention in shared hardware resources challenges certification. Furthermore, most safety certification standards target single-core architectures and do not provide explicit guidance for multicore processors. Recently, however, CAST-32A has been presented providing guidance for software planning, development and verification in multicores. In this paper, from a theoretical level, we provide a detailed review of CAST-32A objectives and the difficulty of reaching them under current COTS multicore design trends; at experimental level, we assess the difficulties of the application of CAST-32A to a real multicore processor, the NXP P4080.This work has been partially supported by the Spanish Ministry of Economy and Competitiveness (MINECO) under grant TIN2015-65316-P and the HiPEAC Network of Excellence. Jaume Abella has been partially supported by the MINECO under Ramon y Cajal grant RYC-2013-14717.Peer ReviewedPostprint (author's final draft

    StochKit-FF: Efficient Systems Biology on Multicore Architectures

    Full text link
    The stochastic modelling of biological systems is an informative, and in some cases, very adequate technique, which may however result in being more expensive than other modelling approaches, such as differential equations. We present StochKit-FF, a parallel version of StochKit, a reference toolkit for stochastic simulations. StochKit-FF is based on the FastFlow programming toolkit for multicores and exploits the novel concept of selective memory. We experiment StochKit-FF on a model of HIV infection dynamics, with the aim of extracting information from efficiently run experiments, here in terms of average and variance and, on a longer term, of more structured data.Comment: 14 pages + cover pag
    • …
    corecore