89,491 research outputs found

    On the behaviour of differential evolution for problems with dynamic linear constraints

    Get PDF
    Evolutionary algorithms have been widely applied for solving dynamic constrained optimization problems (DCOPs) as a common area of research in evolutionary optimization. Current benchmarks proposed for testing these problems in the continuous spaces are either not scalable in problem dimension or the settings for the environmental changes are not flexible. Moreover, they mainly focus on non-linear environmental changes on the objective function. While the dynamism in some real-world problems exists in the constraints and can be emulated with linear constraint changes. The purpose of this paper is to introduce a framework which produces benchmarks in which a dynamic environment is created with simple changes in linear constraints (rotation and translation of constraint's hyperplane). Our proposed framework creates dynamic benchmarks that are flexible in terms of number of changes, dimension of the problem and can be applied to test any objective function. Different constraint handling techniques will then be used to compare with our benchmark. The results reveal that with these changes set, there was an observable effect on the performance of the constraint handling techniques.Maryam Hasani-Shoreh, MarĂŹa-Yaneli Ameca-Alducin, Wilson Blaikie, Frank Neuman

    Optimisation of Mobile Communication Networks - OMCO NET

    Get PDF
    The mini conference “Optimisation of Mobile Communication Networks” focuses on advanced methods for search and optimisation applied to wireless communication networks. It is sponsored by Research & Enterprise Fund Southampton Solent University. The conference strives to widen knowledge on advanced search methods capable of optimisation of wireless communications networks. The aim is to provide a forum for exchange of recent knowledge, new ideas and trends in this progressive and challenging area. The conference will popularise new successful approaches on resolving hard tasks such as minimisation of transmit power, cooperative and optimal routing

    Optimal low-thrust trajectories to asteroids through an algorithm based on differential dynamic programming

    Get PDF
    In this paper an optimisation algorithm based on Differential Dynamic Programming is applied to the design of rendezvous and fly-by trajectories to near Earth objects. Differential dynamic programming is a successive approximation technique that computes a feedback control law in correspondence of a fixed number of decision times. In this way the high dimensional problem characteristic of low-thrust optimisation is reduced into a series of small dimensional problems. The proposed method exploits the stage-wise approach to incorporate an adaptive refinement of the discretisation mesh within the optimisation process. A particular interpolation technique was used to preserve the feedback nature of the control law, thus improving robustness against some approximation errors introduced during the adaptation process. The algorithm implements global variations of the control law, which ensure a further increase in robustness. The results presented show how the proposed approach is capable of fully exploiting the multi-body dynamics of the problem; in fact, in one of the study cases, a fly-by of the Earth is scheduled, which was not included in the first guess solution

    A Feature-Based Analysis on the Impact of Set of Constraints for e-Constrained Differential Evolution

    Full text link
    Different types of evolutionary algorithms have been developed for constrained continuous optimization. We carry out a feature-based analysis of evolved constrained continuous optimization instances to understand the characteristics of constraints that make problems hard for evolutionary algorithm. In our study, we examine how various sets of constraints can influence the behaviour of e-Constrained Differential Evolution. Investigating the evolved instances, we obtain knowledge of what type of constraints and their features make a problem difficult for the examined algorithm.Comment: 17 Page

    Out of equilibrium dynamics of classical and quantum complex systems

    Get PDF
    Equilibrium is a rather ideal situation, the exception rather than the rule in Nature. Whenever the external or internal parameters of a physical system are varied its subsequent relaxation to equilibrium may be either impossible or take very long times. From the point of view of fundamental physics no generic principle such as the ones of thermodynamics allows us to fully understand their behaviour. The alternative is to treat each case separately. It is illusionary to attempt to give, at least at this stage, a complete description of all non-equilibrium situations. Still, one can try to identify and characterise some concrete but still general features of a class of out of equilibrium problems - yet to be identified - and search for a unified description of these. In this report I briefly describe the behaviour and theory of a set of non-equilibrium systems and I try to highlight common features and some general laws that have emerged in recent years.Comment: 36 pages, to be published in Compte Rendus de l'Academie de Sciences, T. Giamarchi e
    • 

    corecore