71 research outputs found

    An Algorithm for Koml\'os Conjecture Matching Banaszczyk's bound

    Get PDF
    We consider the problem of finding a low discrepancy coloring for sparse set systems where each element lies in at most t sets. We give an efficient algorithm that finds a coloring with discrepancy O((t log n)^{1/2}), matching the best known non-constructive bound for the problem due to Banaszczyk. The previous algorithms only achieved an O(t^{1/2} log n) bound. The result also extends to the more general Koml\'{o}s setting and gives an algorithmic O(log^{1/2} n) bound

    On a generalization of iterated and randomized rounding

    Get PDF
    We give a general method for rounding linear programs that combines the commonly used iterated rounding and randomized rounding techniques. In particular, we show that whenever iterated rounding can be applied to a problem with some slack, there is a randomized procedure that returns an integral solution that satisfies the guarantees of iterated rounding and also has concentration properties. We use this to give new results for several classic problems where iterated rounding has been useful

    Improved Algorithmic Bounds for Discrepancy of Sparse Set Systems

    Get PDF
    We consider the problem of finding a low discrepancy coloring for sparse set systems where each element lies in at most tt sets. We give an algorithm that finds a coloring with discrepancy O((tlognlogs)1/2)O((t \log n \log s)^{1/2}) where ss is the maximum cardinality of a set. This improves upon the previous constructive bound of O(t1/2logn)O(t^{1/2} \log n) based on algorithmic variants of the partial coloring method, and for small ss (e.g.s=poly(t)s=\textrm{poly}(t)) comes close to the non-constructive O((tlogn)1/2)O((t \log n)^{1/2}) bound due to Banaszczyk. Previously, no algorithmic results better than O(t1/2logn)O(t^{1/2}\log n) were known even for s=O(t2)s = O(t^2). Our method is quite robust and we give several refinements and extensions. For example, the coloring we obtain satisfies the stronger size-sensitive property that each set SS in the set system incurs an O((tlognlogS)1/2)O((t \log n \log |S|)^{1/2}) discrepancy. Another variant can be used to essentially match Banaszczyk's bound for a wide class of instances even where ss is arbitrarily large. Finally, these results also extend directly to the more general Koml\'{o}s setting

    Towards a Constructive Version of Banaszczyk\u27s Vector Balancing Theorem

    Get PDF
    An important theorem of Banaszczyk (Random Structures & Algorithms 1998) states that for any sequence of vectors of l_2 norm at most 1/5 and any convex body K of Gaussian measure 1/2 in R^n, there exists a signed combination of these vectors which lands inside K. A major open problem is to devise a constructive version of Banaszczyk\u27s vector balancing theorem, i.e. to find an efficient algorithm which constructs the signed combination. We make progress towards this goal along several fronts. As our first contribution, we show an equivalence between Banaszczyk\u27s theorem and the existence of O(1)-subgaussian distributions over signed combinations. For the case of symmetric convex bodies, our equivalence implies the existence of a universal signing algorithm (i.e. independent of the body), which simply samples from the subgaussian sign distribution and checks to see if the associated combination lands inside the body. For asymmetric convex bodies, we provide a novel recentering procedure, which allows us to reduce to the case where the body is symmetric. As our second main contribution, we show that the above framework can be efficiently implemented when the vectors have length O(1/sqrt{log n}), recovering Banaszczyk\u27s results under this stronger assumption. More precisely, we use random walk techniques to produce the required O(1)-subgaussian signing distributions when the vectors have length O(1/sqrt{log n}), and use a stochastic gradient ascent method to implement the recentering procedure for asymmetric bodies

    On the discrepancy of random low degree set systems

    Get PDF
    Motivated by the celebrated Beck-Fiala conjecture, we consider the random setting where there are n elements and m sets and each element lies in t randomly chosen sets. In this setting, Ezra and Lovett showed an O((tlogt)1/2) discrepancy bound in the regime when n ≤ m and an O(1) bound when n≫mt. In this paper, we give a tight O(√t) bound for the entire range of n and m, under a mild assumption that t=Ω(log log m)2. The result is based on two steps. First, applying the partial coloring method to the case when n=mlogO(1)m and using the properties of the random set system we show that the overa

    The Gram-Schmidt Walk: A Cure for the Banaszczyk Blues

    Get PDF
    A classic result of Banaszczyk (Random Str. & Algor. 1997) states that given any n vectors in Rm with ℓ2-norm at most 1 and any convex body K in Rm of Gaussian measure at least half, there exists a ±1 combination of these vectors that lies in 5K. Banaszczyk’s proof of this result was non-constructive and it was open how to find such a ±1 combination in polynomial time. In this paper, we give an efficient randomized algorithm to find a ±1 combination of the vectors which lies in cK for some fixed constant c > 0. This leads to new efficient algorithms for several problems in discrepancy theory
    corecore