51,457 research outputs found

    Hierarchical Bayesian sparse image reconstruction with application to MRFM

    Get PDF
    This paper presents a hierarchical Bayesian model to reconstruct sparse images when the observations are obtained from linear transformations and corrupted by an additive white Gaussian noise. Our hierarchical Bayes model is well suited to such naturally sparse image applications as it seamlessly accounts for properties such as sparsity and positivity of the image via appropriate Bayes priors. We propose a prior that is based on a weighted mixture of a positive exponential distribution and a mass at zero. The prior has hyperparameters that are tuned automatically by marginalization over the hierarchical Bayesian model. To overcome the complexity of the posterior distribution, a Gibbs sampling strategy is proposed. The Gibbs samples can be used to estimate the image to be recovered, e.g. by maximizing the estimated posterior distribution. In our fully Bayesian approach the posteriors of all the parameters are available. Thus our algorithm provides more information than other previously proposed sparse reconstruction methods that only give a point estimate. The performance of our hierarchical Bayesian sparse reconstruction method is illustrated on synthetic and real data collected from a tobacco virus sample using a prototype MRFM instrument.Comment: v2: final version; IEEE Trans. Image Processing, 200

    Fast Stochastic Hierarchical Bayesian MAP for Tomographic Imaging

    Full text link
    Any image recovery algorithm attempts to achieve the highest quality reconstruction in a timely manner. The former can be achieved in several ways, among which are by incorporating Bayesian priors that exploit natural image tendencies to cue in on relevant phenomena. The Hierarchical Bayesian MAP (HB-MAP) is one such approach which is known to produce compelling results albeit at a substantial computational cost. We look to provide further analysis and insights into what makes the HB-MAP work. While retaining the proficient nature of HB-MAP's Type-I estimation, we propose a stochastic approximation-based approach to Type-II estimation. The resulting algorithm, fast stochastic HB-MAP (fsHBMAP), takes dramatically fewer operations while retaining high reconstruction quality. We employ our fsHBMAP scheme towards the problem of tomographic imaging and demonstrate that fsHBMAP furnishes promising results when compared to many competing methods.Comment: 5 Pages, 4 Figures, Conference (Accepted to Asilomar 2017

    Generalized Sparse Bayesian Learning and Application to Image Reconstruction

    Get PDF
    Image reconstruction based on indirect, noisy, or incomplete data remains an important yet challenging task. While methods such as compressive sensing have demonstrated high-resolution image recovery in various settings, there remain issues of robustness due to parameter tuning. Moreover, since the recovery is limited to a point estimate, it is impossible to quantify the uncertainty, which is often desirable. Due to these inherent limitations, a sparse Bayesian learning approach is sometimes adopted to recover a posterior distribution of the unknown. Sparse Bayesian learning assumes that some linear transformation of the unknown is sparse. However, most of the methods developed are tailored to specific problems, with particular forward models and priors. Here, we present a generalized approach to sparse Bayesian learning. It has the advantage that it can be used for various types of data acquisitions and prior information. Some preliminary results on image reconstruction/recovery indicate its potential use for denoising, deblurring, and magnetic resonance imaging

    Belief Propagation Reconstruction for Discrete Tomography

    Get PDF
    International audienceWe consider the reconstruction of a two-dimensional discrete image from a set of tomographic measurements corresponding to the Radon projection. Assuming that the image has a structure where neighbouring pixels have a larger probability to take the same value, we follow a Bayesian approach and introduce a fast message-passing reconstruction algorithm based on belief propagation. For numerical results, we specialize to the case of binary tomography. We test the algorithm on binary synthetic images with different length scales and compare our results against a more usual convex optimization approach. We investigate the reconstruction error as a function of the number of tomographic measurements, corresponding to the number of projection angles. The belief propagation algorithm turns out to be more efficient than the convex-optimization algorithm, both in terms of recovery bounds for noise-free projections, and in terms of reconstruction quality when moderate Gaussian noise is added to the projections

    Multi-coil magnetic resonance imaging reconstruction with a Markov Random Field prior

    Get PDF
    Recent improvements in magnetic resonance image (MRI) reconstruction from partial data have been reported using spatial context modelling with Markov random field (MRF) priors. However, these algorithms have been developed only for magnitude images from single-coil measurements. In practice, most of the MRI images today are acquired using multi-coil data. In this paper, we extend our recent approach for MRI reconstruction with MRF priors to deal with multi-coil data i.e., to be applicable in parallel MRI (pMRI) settings. Instead of reconstructing images from different coils independently and subsequently combining them into the final image, we recover MRI image by processing jointly the undersampled measurements from all coils together with their estimated sensitivity maps. The proposed method incorporates a Bayesian formulation of the spatial context into the reconstruction problem. To solve the resulting problem, we derive an efficient algorithm based on the alternating direction method of multipliers (ADMM). Experimental results demonstrate the effectiveness of the proposed approach in comparison to some well-adopted methods for accelerated pMRI reconstruction from undersampled data
    • 

    corecore