91 research outputs found

    Density of tautologies in logics with one variable

    Get PDF
    In the present paper we estimate the ratio of the number of tautologies and the number of formulae of length n by determining the asymptotic density of tautologies in different kinds of logics with one variable. The logics under consideration are the ones with a single connective (nand or nor); negation with a connective (disjunction or conjunction); and several connectives

    The relation between tree size complexity and probability for Boolean functions generated by uniform random trees

    Full text link
    We consider a probability distribution on the set of Boolean functions in n variables which is induced by random Boolean expressions. Such an expression is a random rooted plane tree where the internal vertices are labelled with connectives And and OR and the leaves are labelled with variables or negated variables. We study limiting distribution when the tree size tends to infinity and derive a relation between the tree size complexity and the probability of a function. This is done by first expressing trees representing a particular function as expansions of minimal trees representing this function and then computing the probabilities by means of combinatorial counting arguments relying on generating functions and singularity analysis

    Statistics of implicational logic

    Get PDF
    In this paper we investigate the size of the fraction of tautologies of the given length n against the number of all formulas of length n for implicational logic. We are specially interested in asymptotic behavior of this fraction. We demonstrate the relation between a number of premises of implicational formula and asymptotic probability of finding formula with this number of premises. Furthermore we investigate the distribution of this asymptotic probabilities. Distribution for all formulas is contrasted with the same distribution for tautologies only. We prove those distributions to be so different that enable us to estimate likelihood of truth for a given long formula. Despite of the fact that all discussed problems and methods in this paper are solved by mathematical means, the paper may have some philosophical impact on the understanding how much the phenomenon of truth is sporadic or frequent in random logical sentences

    Asymptotically almost all \lambda-terms are strongly normalizing

    Full text link
    We present quantitative analysis of various (syntactic and behavioral) properties of random \lambda-terms. Our main results are that asymptotically all the terms are strongly normalizing and that any fixed closed term almost never appears in a random term. Surprisingly, in combinatory logic (the translation of the \lambda-calculus into combinators), the result is exactly opposite. We show that almost all terms are not strongly normalizing. This is due to the fact that any fixed combinator almost always appears in a random combinator

    Acta Cybernetica : Volume 20. Number 3.

    Get PDF

    Scale-Free Random SAT Instances

    Full text link
    We focus on the random generation of SAT instances that have properties similar to real-world instances. It is known that many industrial instances, even with a great number of variables, can be solved by a clever solver in a reasonable amount of time. This is not possible, in general, with classical randomly generated instances. We provide a different generation model of SAT instances, called \emph{scale-free random SAT instances}. It is based on the use of a non-uniform probability distribution P(i)iβP(i)\sim i^{-\beta} to select variable ii, where β\beta is a parameter of the model. This results into formulas where the number of occurrences kk of variables follows a power-law distribution P(k)kδP(k)\sim k^{-\delta} where δ=1+1/β\delta = 1 + 1/\beta. This property has been observed in most real-world SAT instances. For β=0\beta=0, our model extends classical random SAT instances. We prove the existence of a SAT-UNSAT phase transition phenomenon for scale-free random 2-SAT instances with β<1/2\beta<1/2 when the clause/variable ratio is m/n=12β(1β)2m/n=\frac{1-2\beta}{(1-\beta)^2}. We also prove that scale-free random k-SAT instances are unsatisfiable with high probability when the number of clauses exceeds ω(n(1β)k)\omega(n^{(1-\beta)k}). %This implies that the SAT/UNSAT phase transition phenomena vanishes when β>11/k\beta>1-1/k, and formulas are unsatisfiable due to a small core of clauses. The proof of this result suggests that, when β>11/k\beta>1-1/k, the unsatisfiability of most formulas may be due to small cores of clauses. Finally, we show how this model will allow us to generate random instances similar to industrial instances, of interest for testing purposes
    corecore