100,892 research outputs found

    Hardness of approximation for quantum problems

    Full text link
    The polynomial hierarchy plays a central role in classical complexity theory. Here, we define a quantum generalization of the polynomial hierarchy, and initiate its study. We show that not only are there natural complete problems for the second level of this quantum hierarchy, but that these problems are in fact hard to approximate. Using these techniques, we also obtain hardness of approximation for the class QCMA. Our approach is based on the use of dispersers, and is inspired by the classical results of Umans regarding hardness of approximation for the second level of the classical polynomial hierarchy [Umans, FOCS 1999]. The problems for which we prove hardness of approximation for include, among others, a quantum version of the Succinct Set Cover problem, and a variant of the local Hamiltonian problem with hybrid classical-quantum ground states.Comment: 21 pages, 1 figure, extended abstract appeared in Proceedings of the 39th International Colloquium on Automata, Languages and Programming (ICALP), pages 387-398, Springer, 201

    Higher-order principal component analysis for the approximation of tensors in tree-based low-rank formats

    Full text link
    This paper is concerned with the approximation of tensors using tree-based tensor formats, which are tensor networks whose graphs are dimension partition trees. We consider Hilbert tensor spaces of multivariate functions defined on a product set equipped with a probability measure. This includes the case of multidimensional arrays corresponding to finite product sets. We propose and analyse an algorithm for the construction of an approximation using only point evaluations of a multivariate function, or evaluations of some entries of a multidimensional array. The algorithm is a variant of higher-order singular value decomposition which constructs a hierarchy of subspaces associated with the different nodes of the tree and a corresponding hierarchy of interpolation operators. Optimal subspaces are estimated using empirical principal component analysis of interpolations of partial random evaluations of the function. The algorithm is able to provide an approximation in any tree-based format with either a prescribed rank or a prescribed relative error, with a number of evaluations of the order of the storage complexity of the approximation format. Under some assumptions on the estimation of principal components, we prove that the algorithm provides either a quasi-optimal approximation with a given rank, or an approximation satisfying the prescribed relative error, up to constants depending on the tree and the properties of interpolation operators. The analysis takes into account the discretization errors for the approximation of infinite-dimensional tensors. Several numerical examples illustrate the main results and the behavior of the algorithm for the approximation of high-dimensional functions using hierarchical Tucker or tensor train tensor formats, and the approximation of univariate functions using tensorization

    Quantum Commuting Circuits and Complexity of Ising Partition Functions

    Get PDF
    Instantaneous quantum polynomial-time (IQP) computation is a class of quantum computation consisting only of commuting two-qubit gates and is not universal in the sense of standard quantum computation. Nevertheless, it has been shown that if there is a classical algorithm that can simulate IQP efficiently, the polynomial hierarchy (PH) collapses at the third level, which is highly implausible. However, the origin of the classical intractability is still less understood. Here we establish a relationship between IQP and computational complexity of the partition functions of Ising models. We apply the established relationship in two opposite directions. One direction is to find subclasses of IQP that are classically efficiently simulatable in the strong sense, by using exact solvability of certain types of Ising models. Another direction is applying quantum computational complexity of IQP to investigate (im)possibility of efficient classical approximations of Ising models with imaginary coupling constants. Specifically, we show that there is no fully polynomial randomized approximation scheme (FPRAS) for Ising models with almost all imaginary coupling constants even on a planar graph of a bounded degree, unless the PH collapses at the third level. Furthermore, we also show a multiplicative approximation of such a class of Ising partition functions is at least as hard as a multiplicative approximation for the output distribution of an arbitrary quantum circuit.Comment: 36 pages, 5 figure

    Coding-theorem Like Behaviour and Emergence of the Universal Distribution from Resource-bounded Algorithmic Probability

    Full text link
    Previously referred to as `miraculous' in the scientific literature because of its powerful properties and its wide application as optimal solution to the problem of induction/inference, (approximations to) Algorithmic Probability (AP) and the associated Universal Distribution are (or should be) of the greatest importance in science. Here we investigate the emergence, the rates of emergence and convergence, and the Coding-theorem like behaviour of AP in Turing-subuniversal models of computation. We investigate empirical distributions of computing models in the Chomsky hierarchy. We introduce measures of algorithmic probability and algorithmic complexity based upon resource-bounded computation, in contrast to previously thoroughly investigated distributions produced from the output distribution of Turing machines. This approach allows for numerical approximations to algorithmic (Kolmogorov-Chaitin) complexity-based estimations at each of the levels of a computational hierarchy. We demonstrate that all these estimations are correlated in rank and that they converge both in rank and values as a function of computational power, despite fundamental differences between computational models. In the context of natural processes that operate below the Turing universal level because of finite resources and physical degradation, the investigation of natural biases stemming from algorithmic rules may shed light on the distribution of outcomes. We show that up to 60\% of the simplicity/complexity bias in distributions produced even by the weakest of the computational models can be accounted for by Algorithmic Probability in its approximation to the Universal Distribution.Comment: 27 pages main text, 39 pages including supplement. Online complexity calculator: http://complexitycalculator.com

    Faster SDP hierarchy solvers for local rounding algorithms

    Full text link
    Convex relaxations based on different hierarchies of linear/semi-definite programs have been used recently to devise approximation algorithms for various optimization problems. The approximation guarantee of these algorithms improves with the number of {\em rounds} rr in the hierarchy, though the complexity of solving (or even writing down the solution for) the rr'th level program grows as nΩ(r)n^{\Omega(r)} where nn is the input size. In this work, we observe that many of these algorithms are based on {\em local} rounding procedures that only use a small part of the SDP solution (of size nO(1)2O(r)n^{O(1)} 2^{O(r)} instead of nΩ(r)n^{\Omega(r)}). We give an algorithm to find the requisite portion in time polynomial in its size. The challenge in achieving this is that the required portion of the solution is not fixed a priori but depends on other parts of the solution, sometimes in a complicated iterative manner. Our solver leads to nO(1)2O(r)n^{O(1)} 2^{O(r)} time algorithms to obtain the same guarantees in many cases as the earlier nO(r)n^{O(r)} time algorithms based on rr rounds of the Lasserre hierarchy. In particular, guarantees based on O(logn)O(\log n) rounds can be realized in polynomial time. We develop and describe our algorithm in a fairly general abstract framework. The main technical tool in our work, which might be of independent interest in convex optimization, is an efficient ellipsoid algorithm based separation oracle for convex programs that can output a {\em certificate of infeasibility with restricted support}. This is used in a recursive manner to find a sequence of consistent points in nested convex bodies that "fools" local rounding algorithms.Comment: 30 pages, 8 figure

    Descriptive complexity of #P functions : A new perspective

    Get PDF
    We introduce a new framework for a descriptive complexity approach to arithmetic computations. We define a hierarchy of classes based on the idea of counting assignments to free function variables in first-order formulae. We completely determine the inclusion structure and show that #P and #AC0 appear as classes of this hierarchy. In this way, we unconditionally place #AC0 properly in a strict hierarchy of arithmetic classes within #P. Furthermore, we show that some of our classes admit efficient approximation in the sense of FPRAS. We compare our classes with a hierarchy within #P defined in a model-theoretic way by Saluja et al. and argue that our approach is better suited to study arithmetic circuit classes such as #AC0 which can be descriptively characterized as a class in our framework.Peer reviewe
    corecore