18,295 research outputs found

    Two Collocation Type Methods for Fractional Differential Equations with Non-Local Boundary Conditions

    Get PDF
    A class of non-local boundary value problems for linear fractional differential equations with Caputo-type differential operators is considered. By using integral equation reformulation of the boundary value problem, we study the existence and smoothness of the exact solution. Using the obtained regularity properties and spline collocation techniques, we construct two numerical methods (Method 1 and Method 2) for finding approximate solutions. By choosing suitable graded grids, we derive optimal global convergence estimates and obtain some super-convergence results for Method 2 by requiring additional assumptions on equation and collocation parameters. Some numerical illustrations for verification of theoretical results is also presented

    A comparison between numerical solutions to fractional differential equations: Adams-type predictor-corrector and multi-step generalized differential transform method

    Get PDF
    In this note, two numerical methods of solving fractional differential equations (FDEs) are briefly described, namely predictor-corrector approach of Adams-Bashforth-Moulton type and multi-step generalized differential transform method (MSGDTM), and then a demonstrating example is given to compare the results of the methods. It is shown that the MSGDTM, which is an enhancement of the generalized differential transform method, neglects the effect of non-local structure of fractional differentiation operators and fails to accurately solve the FDEs over large domains.Comment: 12 pages, 2 figure

    A survey on fuzzy fractional differential and optimal control nonlocal evolution equations

    Full text link
    We survey some representative results on fuzzy fractional differential equations, controllability, approximate controllability, optimal control, and optimal feedback control for several different kinds of fractional evolution equations. Optimality and relaxation of multiple control problems, described by nonlinear fractional differential equations with nonlocal control conditions in Banach spaces, are considered.Comment: This is a preprint of a paper whose final and definite form is with 'Journal of Computational and Applied Mathematics', ISSN: 0377-0427. Submitted 17-July-2017; Revised 18-Sept-2017; Accepted for publication 20-Sept-2017. arXiv admin note: text overlap with arXiv:1504.0515

    A fractional B-spline collocation method for the numerical solution of fractional predator-prey models

    Get PDF
    We present a collocation method based on fractional B-splines for the solution of fractional differential problems. The key-idea is to use the space generated by the fractional B-splines, i.e., piecewise polynomials of noninteger degree, as approximating space. Then, in the collocation step the fractional derivative of the approximating function is approximated accurately and efficiently by an exact differentiation rule that involves the generalized finite difference operator. To show the effectiveness of the method for the solution of nonlinear dynamical systems of fractional order, we solved the fractional Lotka-Volterra model and a fractional predator-pray model with variable coefficients. The numerical tests show that the method we proposed is accurate while keeping a low computational cost

    Efficient multistep methods for tempered fractional calculus: Algorithms and Simulations

    Full text link
    In this work, we extend the fractional linear multistep methods in [C. Lubich, SIAM J. Math. Anal., 17 (1986), pp.704--719] to the tempered fractional integral and derivative operators in the sense that the tempered fractional derivative operator is interpreted in terms of the Hadamard finite-part integral. We develop two fast methods, Fast Method I and Fast Method II, with linear complexity to calculate the discrete convolution for the approximation of the (tempered) fractional operator. Fast Method I is based on a local approximation for the contour integral that represents the convolution weight. Fast Method II is based on a globally uniform approximation of the trapezoidal rule for the integral on the real line. Both methods are efficient, but numerical experimentation reveals that Fast Method II outperforms Fast Method I in terms of accuracy, efficiency, and coding simplicity. The memory requirement and computational cost of Fast Method II are O(Q)O(Q) and O(QnT)O(Qn_T), respectively, where nTn_T is the number of the final time steps and QQ is the number of quadrature points used in the trapezoidal rule. The effectiveness of the fast methods is verified through a series of numerical examples for long-time integration, including a numerical study of a fractional reaction-diffusion model
    • …
    corecore