1,175 research outputs found

    On the Size and the Approximability of Minimum Temporally Connected Subgraphs

    Get PDF
    We consider temporal graphs with discrete time labels and investigate the size and the approximability of minimum temporally connected spanning subgraphs. We present a family of minimally connected temporal graphs with nn vertices and Ω(n2)\Omega(n^2) edges, thus resolving an open question of (Kempe, Kleinberg, Kumar, JCSS 64, 2002) about the existence of sparse temporal connectivity certificates. Next, we consider the problem of computing a minimum weight subset of temporal edges that preserve connectivity of a given temporal graph either from a given vertex r (r-MTC problem) or among all vertex pairs (MTC problem). We show that the approximability of r-MTC is closely related to the approximability of Directed Steiner Tree and that r-MTC can be solved in polynomial time if the underlying graph has bounded treewidth. We also show that the best approximation ratio for MTC is at least O(2log1ϵn)O(2^{\log^{1-\epsilon} n}) and at most O(min{n1+ϵ,(ΔM)2/3+ϵ})O(\min\{n^{1+\epsilon}, (\Delta M)^{2/3+\epsilon}\}), for any constant ϵ>0\epsilon > 0, where MM is the number of temporal edges and Δ\Delta is the maximum degree of the underlying graph. Furthermore, we prove that the unweighted version of MTC is APX-hard and that MTC is efficiently solvable in trees and 22-approximable in cycles

    On the Approximability and Hardness of the Minimum Connected Dominating Set with Routing Cost Constraint

    Full text link
    In the problem of minimum connected dominating set with routing cost constraint, we are given a graph G=(V,E)G=(V,E), and the goal is to find the smallest connected dominating set DD of GG such that, for any two non-adjacent vertices uu and vv in GG, the number of internal nodes on the shortest path between uu and vv in the subgraph of GG induced by D{u,v}D \cup \{u,v\} is at most α\alpha times that in GG. For general graphs, the only known previous approximability result is an O(logn)O(\log n)-approximation algorithm (n=Vn=|V|) for α=1\alpha = 1 by Ding et al. For any constant α>1\alpha > 1, we give an O(n11α(logn)1α)O(n^{1-\frac{1}{\alpha}}(\log n)^{\frac{1}{\alpha}})-approximation algorithm. When α5\alpha \geq 5, we give an O(nlogn)O(\sqrt{n}\log n)-approximation algorithm. Finally, we prove that, when α=2\alpha =2, unless NPDTIME(npolylogn)NP \subseteq DTIME(n^{poly\log n}), for any constant ϵ>0\epsilon > 0, the problem admits no polynomial-time 2log1ϵn2^{\log^{1-\epsilon}n}-approximation algorithm, improving upon the Ω(logn)\Omega(\log n) bound by Du et al. (albeit under a stronger hardness assumption)

    Improved Inapproximability Results for Maximum k-Colorable Subgraph

    Full text link
    We study the maximization version of the fundamental graph coloring problem. Here the goal is to color the vertices of a k-colorable graph with k colors so that a maximum fraction of edges are properly colored (i.e. their endpoints receive different colors). A random k-coloring properly colors an expected fraction 1-1/k of edges. We prove that given a graph promised to be k-colorable, it is NP-hard to find a k-coloring that properly colors more than a fraction ~1-O(1/k} of edges. Previously, only a hardness factor of 1-O(1/k^2) was known. Our result pins down the correct asymptotic dependence of the approximation factor on k. Along the way, we prove that approximating the Maximum 3-colorable subgraph problem within a factor greater than 32/33 is NP-hard. Using semidefinite programming, it is known that one can do better than a random coloring and properly color a fraction 1-1/k +2 ln k/k^2 of edges in polynomial time. We show that, assuming the 2-to-1 conjecture, it is hard to properly color (using k colors) more than a fraction 1-1/k + O(ln k/ k^2) of edges of a k-colorable graph.Comment: 16 pages, 2 figure
    corecore