270 research outputs found

    Approximate Deadline-Scheduling with Precedence Constraints

    Full text link
    We consider the classic problem of scheduling a set of n jobs non-preemptively on a single machine. Each job j has non-negative processing time, weight, and deadline, and a feasible schedule needs to be consistent with chain-like precedence constraints. The goal is to compute a feasible schedule that minimizes the sum of penalties of late jobs. Lenstra and Rinnoy Kan [Annals of Disc. Math., 1977] in their seminal work introduced this problem and showed that it is strongly NP-hard, even when all processing times and weights are 1. We study the approximability of the problem and our main result is an O(log k)-approximation algorithm for instances with k distinct job deadlines

    How the structure of precedence constraints may change the complexity class of scheduling problems

    Full text link
    This survey aims at demonstrating that the structure of precedence constraints plays a tremendous role on the complexity of scheduling problems. Indeed many problems can be NP-hard when considering general precedence constraints, while they become polynomially solvable for particular precedence constraints. We also show that there still are many very exciting challenges in this research area

    The Feedback Arc Set Problem with Triangle Inequality is a Vertex Cover Problem

    Full text link
    We consider the (precedence constrained) Minimum Feedback Arc Set problem with triangle inequalities on the weights, which finds important applications in problems of ranking with inconsistent information. We present a surprising structural insight showing that the problem is a special case of the minimum vertex cover in hypergraphs with edges of size at most 3. This result leads to combinatorial approximation algorithms for the problem and opens the road to studying the problem as a vertex cover problem

    Approximation Algorithms for Scheduling with Resource and Precedence Constraints

    Get PDF
    We study non-preemptive scheduling problems on identical parallel machines and uniformly related machines under both resource constraints and general precedence constraints between jobs. Our first result is an O(logn)-approximation algorithm for the objective of minimizing the makespan on parallel identical machines under resource and general precedence constraints. We then use this result as a subroutine to obtain an O(logn)-approximation algorithm for the more general objective of minimizing the total weighted completion time on parallel identical machines under both constraints. Finally, we present an O(logm logn)-approximation algorithm for scheduling under these constraints on uniformly related machines. We show that these results can all be generalized to include the case where each job has a release time. This is the first upper bound on the approximability of this class of scheduling problems where both resource and general precedence constraints must be satisfied simultaneously

    The robust single machine scheduling problem with uncertain release and processing times

    Get PDF
    In this work, we study the single machine scheduling problem with uncertain release times and processing times of jobs. We adopt a robust scheduling approach, in which the measure of robustness to be minimized for a given sequence of jobs is the worst-case objective function value from the set of all possible realizations of release and processing times. The objective function value is the total flow time of all jobs. We discuss some important properties of robust schedules for zero and non-zero release times, and illustrate the added complexity in robust scheduling given non-zero release times. We propose heuristics based on variable neighborhood search and iterated local search to solve the problem and generate robust schedules. The algorithms are tested and their solution performance is compared with optimal solutions or lower bounds through numerical experiments based on synthetic data

    A PTAS for Minimizing Average Weighted Completion Time With Release Dates on Uniformly Related Machines

    Get PDF
    A classical scheduling problem is to find schedules that minimize average weighted completion time of jobs with release dates. When multiple machines are available, the machine environments may range from identical machines (the processing time required by a job is invariant across the machines) at one end, to unrelated machines (the processing time required by a job on any machine is an arbitrary function of the specific machine) at the other end of the spectrum. While the problem is strongly NP-hard even in the case of a single machine, constant factor approximation algorithms have been known for even the most general machine environment of unrelated machines. Recently, a polynomial-time approximation scheme (PTAS) was discovered for the case of identical parallel machines [1]. In contrast, it is known that this problem is MAX SNP-hard for unrelated machines [10]. An important open problem is to determine the approximability of the intermediate case of uniformly related machines where each machine i has a speed si and it takes p/si time to executing a job of processing size pIn this paper, we resolve this problem by obtaining a PTAS for the problem. This improves the earlier known ratio of (2 + ∈) for the problem
    • …
    corecore