3 research outputs found

    Advances in Optimization and Nonlinear Analysis

    Get PDF
    The present book focuses on that part of calculus of variations, optimization, nonlinear analysis and related applications which combines tools and methods from partial differential equations with geometrical techniques. More precisely, this work is devoted to nonlinear problems coming from different areas, with particular reference to those introducing new techniques capable of solving a wide range of problems. The book is a valuable guide for researchers, engineers and students in the field of mathematics, operations research, optimal control science, artificial intelligence, management science and economics

    Bilevel programming: reformulations, regularity, and stationarity

    Get PDF
    We have considered the bilevel programming problem in the case where the lower-level problem admits more than one optimal solution. It is well-known in the literature that in such a situation, the problem is ill-posed from the view point of scalar objective optimization. Thus the optimistic and pessimistic approaches have been suggested earlier in the literature to deal with it in this case. In the thesis, we have developed a unified approach to derive necessary optimality conditions for both the optimistic and pessimistic bilevel programs, which is based on advanced tools from variational analysis. We have obtained various constraint qualifications and stationarity conditions depending on some constructive representations of the solution set-valued mapping of the follower’s problem. In the auxiliary developments, we have provided rules for the generalized differentiation and robust Lipschitzian properties for the lower-level solution setvalued map, which are of a fundamental interest for other areas of nonlinear and nonsmooth optimization. Some of the results of the aforementioned theory have then been applied to derive stationarity conditions for some well-known transportation problems having the bilevel structure

    Symbolic approaches and artificial intelligence algorithms for solving multi-objective optimisation problems

    Get PDF
    Problems that have more than one objective function are of great importance in engineering sciences and many other disciplines. This class of problems are known as multi-objective optimisation problems (or multicriteria). The difficulty here lies in the conflict between the various objective functions. Due to this conflict, one cannot find a single ideal solution which simultaneously satisfies all the objectives. But instead one can find the set of Pareto-optimal solutions (Pareto-optimal set) and consequently the Pareto-optimal front is established. Finding these solutions plays an important role in multi-objective optimisation problems and mathematically the problem is considered to be solved when the Pareto-optimal set, i.e. the set of all compromise solutions is found. The Pareto-optimal set may contain information that can help the designer make a decision and thus arrive at better trade-off solutions. The aim of this research is to develop new multi-objective optimisation symbolic algorithms capable of detecting relationship(s) among decision variables that can be used for constructing the analytical formula of Pareto-optimal front based on the extension of the current optimality conditions. A literature survey of theoretical and evolutionary computation techniques for handling multiple objectives, constraints and variable interaction highlights a lack of techniques to handle variable interaction. This research, therefore, focuses on the development of techniques for detecting the relationships between the decision variables (variable interaction) in the presence of multiple objectives and constraints. It attempts to fill the gap in this research by formally extending the theoretical results (optimality conditions). The research then proposes first-order multi-objective symbolic algorithm or MOSA-I and second-order multi-objective symbolic algorithm or MOSA-II that are capable of detecting the variable interaction. The performance of these algorithms is analysed and compared to a current state-of-the-art optimisation algorithm using popular test problems. The performance of the MOSA-II algorithm is finally validated using three appropriately chosen problems from literature. In this way, this research proposes a fully tested and validated methodology for dealing with multi-objective optimisation problems. In conclusion, this research proposes two new symbolic algorithms that are used for identifying the variable interaction responsible for constructing Pareto-optimal front among objectives in multi-objective optimisation problems. This is completed based on a development and relaxation of the first and second-order optimality conditions of Karush-Kuhn-Tucker.EThOS - Electronic Theses Online ServiceGBUnited Kingdo
    corecore