5,906 research outputs found

    Graph-Based Shape Analysis Beyond Context-Freeness

    Full text link
    We develop a shape analysis for reasoning about relational properties of data structures. Both the concrete and the abstract domain are represented by hypergraphs. The analysis is parameterized by user-supplied indexed graph grammars to guide concretization and abstraction. This novel extension of context-free graph grammars is powerful enough to model complex data structures such as balanced binary trees with parent pointers, while preserving most desirable properties of context-free graph grammars. One strength of our analysis is that no artifacts apart from grammars are required from the user; it thus offers a high degree of automation. We implemented our analysis and successfully applied it to various programs manipulating AVL trees, (doubly-linked) lists, and combinations of both

    CHR as grammar formalism. A first report

    Full text link
    Grammars written as Constraint Handling Rules (CHR) can be executed as efficient and robust bottom-up parsers that provide a straightforward, non-backtracking treatment of ambiguity. Abduction with integrity constraints as well as other dynamic hypothesis generation techniques fit naturally into such grammars and are exemplified for anaphora resolution, coordination and text interpretation.Comment: 12 pages. Presented at ERCIM Workshop on Constraints, Prague, Czech Republic, June 18-20, 200

    AutoBayes: A System for Generating Data Analysis Programs from Statistical Models

    No full text
    Data analysis is an important scientific task which is required whenever information needs to be extracted from raw data. Statistical approaches to data analysis, which use methods from probability theory and numerical analysis, are well-founded but difficult to implement: the development of a statistical data analysis program for any given application is time-consuming and requires substantial knowledge and experience in several areas. In this paper, we describe AutoBayes, a program synthesis system for the generation of data analysis programs from statistical models. A statistical model specifies the properties for each problem variable (i.e., observation or parameter) and its dependencies in the form of a probability distribution. It is a fully declarative problem description, similar in spirit to a set of differential equations. From such a model, AutoBayes generates optimized and fully commented C/C++ code which can be linked dynamically into the Matlab and Octave environments. Code is produced by a schema-guided deductive synthesis process. A schema consists of a code template and applicability constraints which are checked against the model during synthesis using theorem proving technology. AutoBayes augments schema-guided synthesis by symbolic-algebraic computation and can thus derive closed-form solutions for many problems. It is well-suited for tasks like estimating best-fitting model parameters for the given data. Here, we describe AutoBayes's system architecture, in particular the schema-guided synthesis kernel. Its capabilities are illustrated by a number of advanced textbook examples and benchmarks

    Hidden covariation detection produces faster, not slower, social judgments

    Get PDF
    In Lewicki’s (1986a) demonstration of Hidden Co-variation Detection (HCD), responses were slower to faces that corresponded with a co-variation encountered previously than to faces with novel co-variations. This slowing contrasts with the typical finding that priming leads to faster responding, and might suggest that HCD is a unique type of implicit process. We extended Lewicki’s (1986a) methodology and showed that participants exposed to nonsalient co-variations between hair length and personality were subsequently faster to respond to faces with those co-variations than to faces without, despite lack of awareness of the critical co-variations. This result confirms that people can detect subtle relationships between features of stimuli and that, as with other types of implicit cognition, this detection facilitates responding.</p

    An Abstract Machine for Unification Grammars

    Full text link
    This work describes the design and implementation of an abstract machine, Amalia, for the linguistic formalism ALE, which is based on typed feature structures. This formalism is one of the most widely accepted in computational linguistics and has been used for designing grammars in various linguistic theories, most notably HPSG. Amalia is composed of data structures and a set of instructions, augmented by a compiler from the grammatical formalism to the abstract instructions, and a (portable) interpreter of the abstract instructions. The effect of each instruction is defined using a low-level language that can be executed on ordinary hardware. The advantages of the abstract machine approach are twofold. From a theoretical point of view, the abstract machine gives a well-defined operational semantics to the grammatical formalism. This ensures that grammars specified using our system are endowed with well defined meaning. It enables, for example, to formally verify the correctness of a compiler for HPSG, given an independent definition. From a practical point of view, Amalia is the first system that employs a direct compilation scheme for unification grammars that are based on typed feature structures. The use of amalia results in a much improved performance over existing systems. In order to test the machine on a realistic application, we have developed a small-scale, HPSG-based grammar for a fragment of the Hebrew language, using Amalia as the development platform. This is the first application of HPSG to a Semitic language.Comment: Doctoral Thesis, 96 pages, many postscript figures, uses pstricks, pst-node, psfig, fullname and a macros fil

    TRX: A Formally Verified Parser Interpreter

    Full text link
    Parsing is an important problem in computer science and yet surprisingly little attention has been devoted to its formal verification. In this paper, we present TRX: a parser interpreter formally developed in the proof assistant Coq, capable of producing formally correct parsers. We are using parsing expression grammars (PEGs), a formalism essentially representing recursive descent parsing, which we consider an attractive alternative to context-free grammars (CFGs). From this formalization we can extract a parser for an arbitrary PEG grammar with the warranty of total correctness, i.e., the resulting parser is terminating and correct with respect to its grammar and the semantics of PEGs; both properties formally proven in Coq.Comment: 26 pages, LMC

    Learning Grammars for Architecture-Specific Facade Parsing

    Get PDF
    International audienceParsing facade images requires optimal handcrafted grammar for a given class of buildings. Such a handcrafted grammar is often designed manually by experts. In this paper, we present a novel framework to learn a compact grammar from a set of ground-truth images. To this end, parse trees of ground-truth annotated images are obtained running existing inference algorithms with a simple, very general grammar. From these parse trees, repeated subtrees are sought and merged together to share derivations and produce a grammar with fewer rules. Furthermore, unsupervised clustering is performed on these rules, so that, rules corresponding to the same complex pattern are grouped together leading to a rich compact grammar. Experimental validation and comparison with the state-of-the-art grammar-based methods on four diff erent datasets show that the learned grammar helps in much faster convergence while producing equal or more accurate parsing results compared to handcrafted grammars as well as grammars learned by other methods. Besides, we release a new dataset of facade images from Paris following the Art-deco style and demonstrate the general applicability and extreme potential of the proposed framework

    AMR Dependency Parsing with a Typed Semantic Algebra

    Full text link
    We present a semantic parser for Abstract Meaning Representations which learns to parse strings into tree representations of the compositional structure of an AMR graph. This allows us to use standard neural techniques for supertagging and dependency tree parsing, constrained by a linguistically principled type system. We present two approximative decoding algorithms, which achieve state-of-the-art accuracy and outperform strong baselines.Comment: This paper will be presented at ACL 2018 (see https://acl2018.org/programme/papers/
    • …
    corecore