4,321 research outputs found

    Robust Networks: Neural Networks Robust to Quantization Noise and Analog Computation Noise Based on Natural Gradient

    Get PDF
    abstract: Deep neural networks (DNNs) have had tremendous success in a variety of statistical learning applications due to their vast expressive power. Most applications run DNNs on the cloud on parallelized architectures. There is a need for for efficient DNN inference on edge with low precision hardware and analog accelerators. To make trained models more robust for this setting, quantization and analog compute noise are modeled as weight space perturbations to DNNs and an information theoretic regularization scheme is used to penalize the KL-divergence between perturbed and unperturbed models. This regularizer has similarities to both natural gradient descent and knowledge distillation, but has the advantage of explicitly promoting the network to and a broader minimum that is robust to weight space perturbations. In addition to the proposed regularization, KL-divergence is directly minimized using knowledge distillation. Initial validation on FashionMNIST and CIFAR10 shows that the information theoretic regularizer and knowledge distillation outperform existing quantization schemes based on the straight through estimator or L2 constrained quantization.Dissertation/ThesisMasters Thesis Computer Engineering 201

    Optimal Moments for the Analysis of Peculiar Velocity Surveys II: Testing

    Full text link
    Analyses of peculiar velocity surveys face several challenges, including low signal--to--noise in individual velocity measurements and the presence of small--scale, nonlinear flows. This is the second in a series of papers in which we describe a new method of overcoming these problems by using data compression as a filter with which to separate large--scale, linear flows from small--scale noise that can bias results. We demonstrate the effectiveness of our method using realistic catalogs of galaxy velocities drawn from N--body simulations. Our tests show that a likelihood analysis of simulated catalogs that uses all of the information contained in the peculiar velocities results in a bias in the estimation of the power spectrum shape parameter Γ\Gamma and amplitude β\beta, and that our method of analysis effectively removes this bias. We expect that this new method will cause peculiar velocity surveys to re--emerge as a useful tool to determine cosmological parameters.Comment: 28 pages, 9 figure

    An Analysis of Perturbed Quantization Steganography in the Spatial Domain

    Get PDF
    Steganography is a form of secret communication in which a message is hidden into a harmless cover object, concealing the actual existence of the message. Due to the potential abuse by criminals and terrorists, much research has also gone into the field of steganalysis - the art of detecting and deciphering a hidden message. As many novel steganographic hiding algorithms become publicly known, researchers exploit these methods by finding statistical irregularities between clean digital images and images containing hidden data. This creates an on-going race between the two fields and requires constant countermeasures on the part of steganographers in order to maintain truly covert communication. This research effort extends upon previous work in perturbed quantization (PQ) steganography by examining its applicability to the spatial domain. Several different information-reducing transformations are implemented along with the PQ system to study their effect on the security of the system as well as their effect on the steganographic capacity of the system. Additionally, a new statistical attack is formulated for detecting ± 1 embedding techniques in color images. Results from performing state-of-the-art steganalysis reveal that the system is less detectable than comparable hiding methods. Grayscale images embedded with message payloads of 0.4bpp are detected only 9% more accurately than by random guessing, and color images embedded with payloads of 0.2bpp are successfully detected only 6% more reliably than by random guessing

    Arbitrarily Strong Utility-Privacy Tradeoff in Multi-Agent Systems

    Full text link
    Each agent in a network makes a local observation that is linearly related to a set of public and private parameters. The agents send their observations to a fusion center to allow it to estimate the public parameters. To prevent leakage of the private parameters, each agent first sanitizes its local observation using a local privacy mechanism before transmitting it to the fusion center. We investigate the utility-privacy tradeoff in terms of the Cram\'er-Rao lower bounds for estimating the public and private parameters. We study the class of privacy mechanisms given by linear compression and noise perturbation, and derive necessary and sufficient conditions for achieving arbitrarily strong utility-privacy tradeoff in a multi-agent system for both the cases where prior information is available and unavailable, respectively. We also provide a method to find the maximum estimation privacy achievable without compromising the utility and propose an alternating algorithm to optimize the utility-privacy tradeoff in the case where arbitrarily strong utility-privacy tradeoff is not achievable

    Modify Training Directions in Function Space to Reduce Generalization Error

    Full text link
    We propose theoretical analyses of a modified natural gradient descent method in the neural network function space based on the eigendecompositions of neural tangent kernel and Fisher information matrix. We firstly present analytical expression for the function learned by this modified natural gradient under the assumptions of Gaussian distribution and infinite width limit. Thus, we explicitly derive the generalization error of the learned neural network function using theoretical methods from eigendecomposition and statistics theory. By decomposing of the total generalization error attributed to different eigenspace of the kernel in function space, we propose a criterion for balancing the errors stemming from training set and the distribution discrepancy between the training set and the true data. Through this approach, we establish that modifying the training direction of the neural network in function space leads to a reduction in the total generalization error. Furthermore, We demonstrate that this theoretical framework is capable to explain many existing results of generalization enhancing methods. These theoretical results are also illustrated by numerical examples on synthetic data
    • …
    corecore