5,699 research outputs found

    A Matrix-Analytic Solution for Randomized Load Balancing Models with Phase-Type Service Times

    Full text link
    In this paper, we provide a matrix-analytic solution for randomized load balancing models (also known as \emph{supermarket models}) with phase-type (PH) service times. Generalizing the service times to the phase-type distribution makes the analysis of the supermarket models more difficult and challenging than that of the exponential service time case which has been extensively discussed in the literature. We first describe the supermarket model as a system of differential vector equations, and provide a doubly exponential solution to the fixed point of the system of differential vector equations. Then we analyze the exponential convergence of the current location of the supermarket model to its fixed point. Finally, we present numerical examples to illustrate our approach and show its effectiveness in analyzing the randomized load balancing schemes with non-exponential service requirements.Comment: 24 page

    Improved Analysis of Deterministic Load-Balancing Schemes

    Full text link
    We consider the problem of deterministic load balancing of tokens in the discrete model. A set of nn processors is connected into a dd-regular undirected network. In every time step, each processor exchanges some of its tokens with each of its neighbors in the network. The goal is to minimize the discrepancy between the number of tokens on the most-loaded and the least-loaded processor as quickly as possible. Rabani et al. (1998) present a general technique for the analysis of a wide class of discrete load balancing algorithms. Their approach is to characterize the deviation between the actual loads of a discrete balancing algorithm with the distribution generated by a related Markov chain. The Markov chain can also be regarded as the underlying model of a continuous diffusion algorithm. Rabani et al. showed that after time T=O(log(Kn)/μ)T = O(\log (Kn)/\mu), any algorithm of their class achieves a discrepancy of O(dlogn/μ)O(d\log n/\mu), where μ\mu is the spectral gap of the transition matrix of the graph, and KK is the initial load discrepancy in the system. In this work we identify some natural additional conditions on deterministic balancing algorithms, resulting in a class of algorithms reaching a smaller discrepancy. This class contains well-known algorithms, eg., the Rotor-Router. Specifically, we introduce the notion of cumulatively fair load-balancing algorithms where in any interval of consecutive time steps, the total number of tokens sent out over an edge by a node is the same (up to constants) for all adjacent edges. We prove that algorithms which are cumulatively fair and where every node retains a sufficient part of its load in each step, achieve a discrepancy of O(min{dlogn/μ,dn})O(\min\{d\sqrt{\log n/\mu},d\sqrt{n}\}) in time O(T)O(T). We also show that in general neither of these assumptions may be omitted without increasing discrepancy. We then show by a combinatorial potential reduction argument that any cumulatively fair scheme satisfying some additional assumptions achieves a discrepancy of O(d)O(d) almost as quickly as the continuous diffusion process. This positive result applies to some of the simplest and most natural discrete load balancing schemes.Comment: minor corrections; updated literature overvie

    Hyper-Scalable JSQ with Sparse Feedback

    Full text link
    Load balancing algorithms play a vital role in enhancing performance in data centers and cloud networks. Due to the massive size of these systems, scalability challenges, and especially the communication overhead associated with load balancing mechanisms, have emerged as major concerns. Motivated by these issues, we introduce and analyze a novel class of load balancing schemes where the various servers provide occasional queue updates to guide the load assignment. We show that the proposed schemes strongly outperform JSQ(dd) strategies with comparable communication overhead per job, and can achieve a vanishing waiting time in the many-server limit with just one message per job, just like the popular JIQ scheme. The proposed schemes are particularly geared however towards the sparse feedback regime with less than one message per job, where they outperform corresponding sparsified JIQ versions. We investigate fluid limits for synchronous updates as well as asynchronous exponential update intervals. The fixed point of the fluid limit is identified in the latter case, and used to derive the queue length distribution. We also demonstrate that in the ultra-low feedback regime the mean stationary waiting time tends to a constant in the synchronous case, but grows without bound in the asynchronous case

    Derandomization of Online Assignment Algorithms for Dynamic Graphs

    Full text link
    This paper analyzes different online algorithms for the problem of assigning weights to edges in a fully-connected bipartite graph that minimizes the overall cost while satisfying constraints. Edges in this graph may disappear and reappear over time. Performance of these algorithms is measured using simulations. This paper also attempts to derandomize the randomized online algorithm for this problem
    corecore