12,330 research outputs found

    Growth and structural change: trends, patterns and policy options

    Get PDF
    economic growth, structural change, convergence, diffusion of technological knowledge

    Professional Judgment in an Era of Artificial Intelligence and Machine Learning

    Get PDF
    Though artificial intelligence (AI) in healthcare and education now accomplishes diverse tasks, there are two features that tend to unite the information processing behind efforts to substitute it for professionals in these fields: reductionism and functionalism. True believers in substitutive automation tend to model work in human services by reducing the professional role to a set of behaviors initiated by some stimulus, which are intended to accomplish some predetermined goal, or maximize some measure of well-being. However, true professional judgment hinges on a way of knowing the world that is at odds with the epistemology of substitutive automation. Instead of reductionism, an encompassing holism is a hallmark of professional practice—an ability to integrate facts and values, the demands of the particular case and prerogatives of society, and the delicate balance between mission and margin. Any presently plausible vision of substituting AI for education and health-care professionals would necessitate a corrosive reductionism. The only way these sectors can progress is to maintain, at their core, autonomous professionals capable of carefully intermediating between technology and the patients it would help treat, or the students it would help learn

    [Subject benchmark statement]: computing

    Get PDF

    A simulation comparison of methods for new product location

    Get PDF
    Includes bibliographical references (p. 29-31)

    Beyond Volume: The Impact of Complex Healthcare Data on the Machine Learning Pipeline

    Full text link
    From medical charts to national census, healthcare has traditionally operated under a paper-based paradigm. However, the past decade has marked a long and arduous transformation bringing healthcare into the digital age. Ranging from electronic health records, to digitized imaging and laboratory reports, to public health datasets, today, healthcare now generates an incredible amount of digital information. Such a wealth of data presents an exciting opportunity for integrated machine learning solutions to address problems across multiple facets of healthcare practice and administration. Unfortunately, the ability to derive accurate and informative insights requires more than the ability to execute machine learning models. Rather, a deeper understanding of the data on which the models are run is imperative for their success. While a significant effort has been undertaken to develop models able to process the volume of data obtained during the analysis of millions of digitalized patient records, it is important to remember that volume represents only one aspect of the data. In fact, drawing on data from an increasingly diverse set of sources, healthcare data presents an incredibly complex set of attributes that must be accounted for throughout the machine learning pipeline. This chapter focuses on highlighting such challenges, and is broken down into three distinct components, each representing a phase of the pipeline. We begin with attributes of the data accounted for during preprocessing, then move to considerations during model building, and end with challenges to the interpretation of model output. For each component, we present a discussion around data as it relates to the healthcare domain and offer insight into the challenges each may impose on the efficiency of machine learning techniques.Comment: Healthcare Informatics, Machine Learning, Knowledge Discovery: 20 Pages, 1 Figur
    • …
    corecore