4,694 research outputs found

    Proof-checking Euclid

    Get PDF
    We used computer proof-checking methods to verify the correctness of our proofs of the propositions in Euclid Book I. We used axioms as close as possible to those of Euclid, in a language closely related to that used in Tarski's formal geometry. We used proofs as close as possible to those given by Euclid, but filling Euclid's gaps and correcting errors. Euclid Book I has 48 propositions, we proved 235 theorems. The extras were partly "Book Zero", preliminaries of a very fundamental nature, partly propositions that Euclid omitted but were used implicitly, partly advanced theorems that we found necessary to fill Euclid's gaps, and partly just variants of Euclid's propositions. We wrote these proofs in a simple fragment of first-order logic corresponding to Euclid's logic, debugged them using a custom software tool, and then checked them in the well-known and trusted proof checkers HOL Light and Coq.Comment: 53 page

    On the relationship between plane and solid geometry

    Get PDF
    Traditional geometry concerns itself with planimetric and stereometric considerations, which are at the root of the division between plane and solid geometry. To raise the issue of the relation between these two areas brings with it a host of different problems that pertain to mathematical practice, epistemology, semantics, ontology, methodology, and logic. In addition, issues of psychology and pedagogy are also important here. To our knowledge there is no single contribution that studies in detail even one of the aforementioned area

    Automated Theorem Proving in GeoGebra: Current Achievements

    Get PDF
    GeoGebra is an open-source educational mathematics software tool, with millions of users worldwide. It has a number of features (integration of computer algebra, dynamic geometry, spreadsheet, etc.), primarily focused on facilitating student experiments, and not on formal reasoning. Since including automated deduction tools in GeoGebra could bring a whole new range of teaching and learning scenarios, and since automated theorem proving and discovery in geometry has reached a rather mature stage, we embarked on a project of incorporating and testing a number of different automated provers for geometry in GeoGebra. In this paper, we present the current achievements and status of this project, and discuss various relevant challenges that this project raises in the educational, mathematical and software contexts. We will describe, first, the recent and forthcoming changes demanded by our project, regarding the implementation and the user interface of GeoGebra. Then we present our vision of the educational scenarios that could be supported by automated reasoning features, and how teachers and students could benefit from the present work. In fact, current performance of GeoGebra, extended with automated deduction tools, is already very promising—many complex theorems can be proved in less than 1 second. Thus, we believe that many new and exciting ways of using GeoGebra in the classroom are on their way

    Supersymmetric quantum theory and (non-commutative) differential geometry

    Get PDF
    We reconsider differential geometry from the point of view of the quantum theory of non-relativistic spinning particles, which provides examples of supersymmetric quantum mechanics. This enables us to encode geometrical structure in algebraic data consisting of an algebra of functions on a manifold and a family of supersymmetry generators represented on a Hilbert space. We show that known types of differential geometry can be classified in terms of the supersymmetries they exhibit. Replacing commutative algebras of functions by non-commutative *-algebras of operators, while retaining supersymmetry, we arrive at a formulation of non-commutative geometry encompassing and extending Connes' original approach. We explore different types of non-commutative geometry and introduce notions of non-commutative manifolds and non-commutative phase spaces. One of the main motivations underlying our work is to construct mathematical tools for novel formulations of quantum gravity, in particular for the investigation of superstring vacua.Comment: 125 pages, Plain TeX fil

    On the Chern-Gauss-Bonnet Theorem and Conformally Twisted Spectral Triples for CC^*-Dynamical Systems

    Get PDF
    The analog of the Chern-Gauss-Bonnet theorem is studied for a CC^*-dynamical system consisting of a CC^*-algebra AA equipped with an ergodic action of a compact Lie group GG. The structure of the Lie algebra g\mathfrak{g} of GG is used to interpret the Chevalley-Eilenberg complex with coefficients in the smooth subalgebra AA\mathcal{A} \subset A as noncommutative differential forms on the dynamical system. We conformally perturb the standard metric, which is associated with the unique GG-invariant state on AA, by means of a Weyl conformal factor given by a positive invertible element of the algebra, and consider the Hermitian structure that it induces on the complex. A Hodge decomposition theorem is proved, which allows us to relate the Euler characteristic of the complex to the index properties of a Hodge-de Rham operator for the perturbed metric. This operator, which is shown to be selfadjoint, is a key ingredient in our construction of a spectral triple on A\mathcal{A} and a twisted spectral triple on its opposite algebra. The conformal invariance of the Euler characteristic is interpreted as an indication of the Chern-Gauss-Bonnet theorem in this setting. The spectral triples encoding the conformally perturbed metrics are shown to enjoy the same spectral summability properties as the unperturbed case
    corecore