179 research outputs found

    Lewis meets Brouwer: constructive strict implication

    Full text link
    C. I. Lewis invented modern modal logic as a theory of "strict implication". Over the classical propositional calculus one can as well work with the unary box connective. Intuitionistically, however, the strict implication has greater expressive power than the box and allows to make distinctions invisible in the ordinary syntax. In particular, the logic determined by the most popular semantics of intuitionistic K becomes a proper extension of the minimal normal logic of the binary connective. Even an extension of this minimal logic with the "strength" axiom, classically near-trivial, preserves the distinction between the binary and the unary setting. In fact, this distinction and the strong constructive strict implication itself has been also discovered by the functional programming community in their study of "arrows" as contrasted with "idioms". Our particular focus is on arithmetical interpretations of the intuitionistic strict implication in terms of preservativity in extensions of Heyting's Arithmetic.Comment: Our invited contribution to the collection "L.E.J. Brouwer, 50 years later

    On the varieties of the second row of the split Freudenthal-Tits Magic Square

    Get PDF
    Our main aim is to provide a uniform geometric characterization of the analogues over arbitrary fields of the four complex Severi varieties, i.e.~the quadric Veronese varieties in 5-dimensional projective spaces, the Segre varieties in 8-di\-men\-sional projective spaces, the line Grassmannians in 14-dimensional projective spaces, and the exceptional varieties of type E6\mathsf{E}_{6} in 26-dimensional projective space. Our theorem can be regarded as a far-reaching generalization of Mazzocca and Melone's approach to finite quadric Veronesean varieties. This approach takes projective properties of complex Severi varieties as smooth varieties as axioms.Comment: Small updates, will be published in Annales de l'institut Fourie

    The reverse mathematics of elementary recursive nonstandard analysis: a robust contribution to the foundations of mathematics

    Get PDF
    Reverse Mathematics (RM) is a program in the Foundations of Mathematics founded by Harvey Friedman in the Seventies ([17, 18]). The aim of RM is to determine the minimal axioms required to prove a certain theorem of ‘ordinary’ mathematics. In many cases one observes that these minimal axioms are also equivalent to this theorem. This phenomenon is called the ‘Main Theme’ of RM and theorem 1.2 is a good example thereof. In practice, most theorems of everyday mathematics are equivalent to one of the four systems WKL0, ACA0, ATR0 and Π1-CA0 or provable in the base theory RCA0. An excellent introduction to RM is Stephen Simpson’s monograph [46]. Nonstandard Analysis has always played an important role in RM. ([32,52,53]). One of the open problems in the literature is the RM of theories of first-order strength I∆0 + exp ([46, p. 406]). In Chapter I, we formulate a solution to this problem in theorem 1.3. This theorem shows that many of the equivalences from theorem 1.2 remain correct when we replace equality by infinitesimal proximity ‘≈’ from Nonstandard Analysis. The base theory now is ERNA, a nonstandard extension of I∆0 + exp. The principle that corresponds to ‘Weak K ̈onig’s lemma’ is the Universal Transfer Principle (see axiom schema 1.57). In particular, one can say that the RM of ERNA+Π1-TRANS is a ‘copy up to infinitesimals’ of the RM of WKL0. This implies that RM is ‘robust’ in the sense this term is used in Statistics and Computer Science ([25,35]). Furthermore, we obtain applications of our results in Theoretical Physics in the form of the ‘Isomorphism Theorem’ (see theorem 1.106). This philosophical excursion is the first application of RM outside of Mathematics and implies that ‘whether reality is continuous or discrete is undecidable because of the way mathematics is used in Physics’ (see paragraph 3.2.4, p. 53). We briefly explore a connection with the program ‘Constructive Reverse Mathematics’ ([30,31]) and in the rest of Chapter I, we consider the RM of ACA0 and related systems. In particular, we prove theorem 1.161, which is a first step towards a ‘copy up to infinitesimals’ of the RM of ACA0. However, one major aesthetic problem with these results is the introduction of extra quantifiers in many of the theorems listed in theorem 1.3 (see e.g. theorem 1.94). To overcome this hurdle, we explore Relative Nonstandard Analysis in Chapters II and III. This new framework involves many degrees of infinity instead of the classical ‘binary’ picture where only two degrees ‘finite’ and ‘infinite’ are available. We extend ERNA to a theory of Relative Nonstandard Analysis called ERNAA and show how this theory and its extensions allow for a completely quantifier- free development of analysis. We also study the metamathematics of ERNAA, motivated by RM. Several ERNA-theorems would not have been discovered without considering ERNAA first

    The Logical Writings of Karl Popper

    Get PDF
    This open access book is the first ever collection of Karl Popper's writings on deductive logic. Karl R. Popper (1902-1994) was one of the most influential philosophers of the 20th century. His philosophy of science ("falsificationism") and his social and political philosophy ("open society") have been widely discussed way beyond academic philosophy. What is not so well known is that Popper also produced a considerable work on the foundations of deductive logic, most of it published at the end of the 1940s as articles at scattered places. This little-known work deserves to be known better, as it is highly significant for modern proof-theoretic semantics. This collection assembles Popper's published writings on deductive logic in a single volume, together with all reviews of these papers. It also contains a large amount of unpublished material from the Popper Archives, including Popper's correspondence related to deductive logic and manuscripts that were (almost) finished, but did not reach the publication stage. All of these items are critically edited with additional comments by the editors. A general introduction puts Popper's work into the context of current discussions on the foundations of logic. This book should be of interest to logicians, philosophers, and anybody concerned with Popper's work
    • …
    corecore