11 research outputs found

    Load Modulation for Backscatter Communication: Channel Capacity and Near-Capacity Schemes

    Full text link
    In backscatter communication (BC), a passive tag transmits information by just affecting an external electromagnetic field through load modulation. Thereby, the feed current of the excited tag antenna is modulated by adapting the passive termination load. This paper studies the achievable information rates with a freely adaptable passive load. As a prerequisite, we unify monostatic, bistatic, and ambient BC with circuit-based system modeling. We present the crucial insight that channel capacity is described by existing results on peak-power-limited quadrature Gaussian channels, because the steady-state tag current phasor lies on a disk. Consequently, we derive the channel capacity for the case of an unmodulated external field, for general passive, purely reactive, or purely resistive tag loads. We find that modulating both resistance and reactance is important for very high rates. We discuss the capacity-achieving load statistics, rate asymptotics, technical conclusions, and rate losses from value-range-constrained loads (which are found to be small for moderate constraints). We then demonstrate that near-capacity rates can be attained by more practical schemes: (i) amplitude-and-phase-shift keying on the reflection coefficient and (ii) simple load circuits of a few switched resistors and capacitors. Finally, we draw conclusions for the ambient BC channel capacity in important special cases.Comment: This work has been submitted to the IEEE for possible publication. Copyright may be transferred without notice. Included conference paper: arXiv:2201.0024

    Joint resource allocation for full-duplex ambient backscatter communication: A difference convex algorithm

    Get PDF
    Nowadays, Ambient Backscatter Communication (AmBC) systems have emerged as a green communication technology to enable massive self-sustainable wireless networks by leveraging Radio Frequency (RF) Energy Harvesting (EH) capability. A Full-duplex Ambient Backscatter Communication (FAmBC) network with a Full-duplex Access Point (AP), a dedicated Legacy User (LU), and several Backscatter Devices (BDs) is considered in this study. The AP with two antennas transfers downlink Orthogonal Frequency Division Multiplexing (OFDM) information and energy to the dedicated LU and several BDs, respectively, while receiving uplink backscattered information from BDs at the same time. One of the key aims in AmBC networks is to ensure fairness among BDs. To address this, we propose the Multi-objective Lexicographical Optimization Problem (MLOP), which aims to maximize the minimum BD’s

    On the Road to 6G: Visions, Requirements, Key Technologies and Testbeds

    Get PDF
    Fifth generation (5G) mobile communication systems have entered the stage of commercial development, providing users with new services and improved user experiences as well as offering a host of novel opportunities to various industries. However, 5G still faces many challenges. To address these challenges, international industrial, academic, and standards organizations have commenced research on sixth generation (6G) wireless communication systems. A series of white papers and survey papers have been published, which aim to define 6G in terms of requirements, application scenarios, key technologies, etc. Although ITU-R has been working on the 6G vision and it is expected to reach a consensus on what 6G will be by mid-2023, the related global discussions are still wide open and the existing literature has identified numerous open issues. This paper first provides a comprehensive portrayal of the 6G vision, technical requirements, and application scenarios, covering the current common understanding of 6G. Then, a critical appraisal of the 6G network architecture and key technologies is presented. Furthermore, existing testbeds and advanced 6G verification platforms are detailed for the first time. In addition, future research directions and open challenges are identified for stimulating the on-going global debate. Finally, lessons learned to date concerning 6G networks are discussed

    Workshop on Microwave Power Transmission and Reception. Workshop Paper Summaries

    Get PDF
    Microwave systems performance and phase control are discussed. Component design and reliability are highlighted. The power amplifiers, radiating elements, rectennas, and solid state configurations are described. The proper sizing of microwave transmission systems is also discussed
    corecore