3,478 research outputs found

    Unified bit-based probabilistic data association aided MIMO detection for high-order QAM

    No full text
    A unified Bit-based Probabilistic Data Association (B-PDA) detection approach is proposed for Multiple-Input Multiple-Output (MIMO) systems employing high-order Quadrature Amplitude Modulation (QAM). The new approach transforms the symbol detection process of QAM to a bit-based process by introducing a Unified Matrix Representation (UMR) of QAM. Both linear natural and nonlinear Gray bit-to-symbol mapping schemes are considered. Our analytical and simulation results demonstrate that the linear natural mapping based B-PDA approach attains an improved detection performance, despite dramatically reducing the computational complexity in contrast to the conventional symbol-based PDA aided MIMO detector. Furthermore, it is shown that the linear natural mapping based B-PDA method is capable of approaching the lower bound performance provided by the nonlinear Gray mapping based B-PDA MIMO detector. Since the linear natural mapping based scheme is simpler and more applicable in practice than its nonlinear Gray mapping based counterpart, we conclude that in the context of the uncoded B-PDA MIMO detector it is preferable to use the linear natural bit-to-symbol mapping, rather than the nonlinear Gray mapping

    Reference Receiver Based Digital Self-Interference Cancellation in MIMO Full-Duplex Transceivers

    Full text link
    In this paper we propose and analyze a novel self-interference cancellation structure for in-band MIMO full-duplex transceivers. The proposed structure utilizes reference receiver chains to obtain reference signals for digital self-interference cancellation, which means that all the transmitter-induced nonidealities will be included in the digital cancellation signal. To the best of our knowledge, this type of a structure has not been discussed before in the context of full-duplex transceivers. First, we will analyze the overall achievable performance of the proposed cancellation scheme, while also providing some insight into the possible bottlenecks. We also provide a detailed formulation of the actual cancellation procedure, and perform an analysis into the effect of the received signal of interest on self-interference coupling channel estimation. The achieved performance of the proposed reference receiver based digital cancellation procedure is then assessed and verified with full waveform simulations. The analysis and waveform simulation results show that under practical transmitter RF/analog impairment levels, the proposed reference receiver based cancellation architecture can provide substantially better self-interference suppression than any existing solution, despite deploying only low-complexity linear digital processing.Comment: 7 pages, 4 figures. To be presented in the 2014 IEEE Broadband Wireless Access Worksho

    Channel Estimation and Uplink Achievable Rates in One-Bit Massive MIMO Systems

    Full text link
    This paper considers channel estimation and achievable rates for the uplink of a massive multiple-input multiple-output (MIMO) system where the base station is equipped with one-bit analog-to-digital converters (ADCs). By rewriting the nonlinear one-bit quantization using a linear expression, we first derive a simple and insightful expression for the linear minimum mean-square-error (LMMSE) channel estimator. Then employing this channel estimator, we derive a closed-form expression for the lower bound of the achievable rate for the maximum ratio combiner (MRC) receiver. Numerical results are presented to verify our analysis and show that our proposed LMMSE channel estimator outperforms the near maximum likelihood (nML) estimator proposed previously.Comment: 5 pages, 2 figures, the Ninth IEEE Sensor Array and Multichannel Signal Processing Worksho

    Reduced-Complexity Maximum-Likelihood Detection in Downlink SDMA Systems

    Get PDF
    The literature of up-link SDMA systems is rich, but at the time of writing there is a paucity of information on the employment of SDMA techniques in the down-link. Hence, in this paper a Space Division Multiple Access (SDMA) down-link (DL) multi-user communication system invoking a novel low-complexity Maximum Likelihood (ML) space-time detection technique is proposed, which can be regarded as an advanced extension of the Complex Sphere Decoder (CSD). We demonstrate that as opposed to the previously published variants of the CSD, the proposed technique may be employed for obtaining a high effective throughput in the so-called “over-loaded” scenario, where the number of transmit antennas exceeds that of the receive antennas. The proposed method achieves the optimum performance of the ML detector even in heavily over-loaded scenarios, while the associated computational complexity is only moderately increased. As an illustrative example, the required Eb/N0 increased from 2 dB to 9 dB, when increasing the normalized system load from unity, representing the fully loaded system, to a normalized load of 1.556

    Jointly Optimal Spatial Channel Assignment and Power Allocation for MIMO SWIPT Systems

    Full text link
    The joint design of spatial channel assignment and power allocation in Multiple Input Multiple Output (MIMO) systems capable of Simultaneous Wireless Information and Power Transfer (SWIPT) is studied. Assuming availability of channel state information at both communications ends, we maximize the harvested energy at the multi-antenna receiver, while satisfying a minimum information rate requirement for the MIMO link. We first derive the globally optimal eigenchannel assignment and power allocation design, and then present a practically motivated tight closed-form approximation for the optimal design parameters. Selected numerical results verify the validity of the optimal solution and provide useful insights on the proposed designs as well as the pareto-optimal rate-energy tradeoff.Comment: 5 pages; 4 figures; accepted to IEEE journal 201
    corecore