12,030 research outputs found

    On the Achievable Energy Efficiency in Dynamic Licensed Shared Access

    Get PDF
    The licensed shared access (LSA) promises to be a viable alternative solution to the well-reported spectrum underutilization. The higher priority of the incumbent in the spectrum sharing arrangement implies that the licensee's access to the spectrum can be revoked or restricted at any time. This has been observed to result in degradation of some critical performance metrics of the latter. In this paper, we investigate the effect of this on the energy efficiency (EE) of an LSA sharing between an airport incumbent and a mobile network operator licensee. We formulate expressions for the operating transmit power of the licensee when its spectrum access right is revoked/restricted in both the uplink and downlink transmission directions. We then propose a power allocation scheme that maximizes the EE of the licensee during these time intervals in which the licensee operating transmit power is constrained by the incumbent system's utilization of the spectrum. We further provide analytical discussions on how the achievable EE during this time compares to when the licensee's access to the spectrum is free of any restriction from the incumbent. The results obtained show that while the EE suffers degradation in the uplink when the licensee spectrum access right is restricted, there is no noticeable difference in the achievable EE in the downlink direction. Furthermore, in the uplink, the optimal power allocation provides better EE even than when the spectrum is free especially at lower transmit power and channel number, while in the downlink, the optimal power allocation EE is consistently better than the free spectrum EE

    Applications of Repeated Games in Wireless Networks: A Survey

    Full text link
    A repeated game is an effective tool to model interactions and conflicts for players aiming to achieve their objectives in a long-term basis. Contrary to static noncooperative games that model an interaction among players in only one period, in repeated games, interactions of players repeat for multiple periods; and thus the players become aware of other players' past behaviors and their future benefits, and will adapt their behavior accordingly. In wireless networks, conflicts among wireless nodes can lead to selfish behaviors, resulting in poor network performances and detrimental individual payoffs. In this paper, we survey the applications of repeated games in different wireless networks. The main goal is to demonstrate the use of repeated games to encourage wireless nodes to cooperate, thereby improving network performances and avoiding network disruption due to selfish behaviors. Furthermore, various problems in wireless networks and variations of repeated game models together with the corresponding solutions are discussed in this survey. Finally, we outline some open issues and future research directions.Comment: 32 pages, 15 figures, 5 tables, 168 reference

    Resource Allocation for Outdoor-to-Indoor Multicarrier Transmission with Shared UE-side Distributed Antenna Systems

    Full text link
    In this paper, we study the resource allocation algorithm design for downlink multicarrier transmission with a shared user equipment (UE)-side distributed antenna system (SUDAS) which utilizes both licensed and unlicensed frequency bands for improving the system throughput. The joint UE selection and transceiver processing matrix design is formulated as a non-convex optimization problem for the maximization of the end-to-end system throughput (bits/s). In order to obtain a tractable resource allocation algorithm, we first show that the optimal transmitter precoding and receiver post-processing matrices jointly diagonalize the end-to-end communication channel. Subsequently, the optimization problem is converted to a scalar optimization problem for multiple parallel channels, which is solved by using an asymptotically optimal iterative algorithm. Simulation results illustrate that the proposed resource allocation algorithm for the SUDAS achieves an excellent system performance and provides a spatial multiplexing gain for single-antenna UEs.Comment: accepted for publication at the IEEE Vehicular Technology Conference (VTC) Spring, Glasgow, Scotland, UK, May 201

    Interference Alignment for Cognitive Radio Communications and Networks: A Survey

    Get PDF
    © 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).Interference alignment (IA) is an innovative wireless transmission strategy that has shown to be a promising technique for achieving optimal capacity scaling of a multiuser interference channel at asymptotically high-signal-to-noise ratio (SNR). Transmitters exploit the availability of multiple signaling dimensions in order to align their mutual interference at the receivers. Most of the research has focused on developing algorithms for determining alignment solutions as well as proving interference alignment’s theoretical ability to achieve the maximum degrees of freedom in a wireless network. Cognitive radio, on the other hand, is a technique used to improve the utilization of the radio spectrum by opportunistically sensing and accessing unused licensed frequency spectrum, without causing harmful interference to the licensed users. With the increased deployment of wireless services, the possibility of detecting unused frequency spectrum becomes diminished. Thus, the concept of introducing interference alignment in cognitive radio has become a very attractive proposition. This paper provides a survey of the implementation of IA in cognitive radio under the main research paradigms, along with a summary and analysis of results under each system model.Peer reviewe
    • …
    corecore