134 research outputs found

    A class of nonparametric DSSY nonconforming quadrilateral elements

    Full text link
    A new class of nonparametric nonconforming quadrilateral finite elements is introduced which has the midpoint continuity and the mean value continuity at the interfaces of elements simultaneously as the rectangular DSSY element [J.Douglas, Jr., J. E. Santos, D. Sheen, and X. Ye. Nonconforming {G}alerkin methods based on quadrilateral elements for second order elliptic problems. ESAIM--Math. Model. Numer. Anal., 33(4):747--770, 1999]. The parametric DSSY element for general quadrilaterals requires five degrees of freedom to have an optimal order of convergence [Z. Cai, J. Douglas, Jr., J. E. Santos, D. Sheen, and X. Ye. Nonconforming quadrilateral finite elements: A correction. Calcolo, 37(4):253--254, 2000], while the new nonparametric DSSY elements require only four degrees of freedom. The design of new elements is based on the decomposition of a bilinear transform into a simple bilinear map followed by a suitable affine map. Numerical results are presented to compare the new elements with the parametric DSSY element.Comment: 20 page

    Virtual Elements for the Navier-Stokes problem on polygonal meshes

    Get PDF
    A family of Virtual Element Methods for the 2D Navier-Stokes equations is proposed and analysed. The schemes provide a discrete velocity field which is point-wise divergence-free. A rigorous error analysis is developed, showing that the methods are stable and optimally convergent. Several numerical tests are presented, confirming the theoretical predictions. A comparison with some mixed finite elements is also performed

    순응 및 비순응 유한요소를 이용한 공동 구조에서의 유체 유동 수치 해석

    Get PDF
    학위논문 (박사)-- 서울대학교 대학원 : 협동과정 계산과학전공, 2014. 8. 신동우.This thesis presents a numerical method for solving the incompressible flow in a square cavity without smoothing the corner singularities. Since nonconforming finite element method can avoid vertex degree of freedom, the values at the upper corners of the cavity are not required to solve the problem. By taking this advantage it is possible to compute accurate numerical solution of the cavity flow without any modification of the problem. The stable nonconforming P1-P0 pair used to solve the incompressible flow problem. DSSY finite elements are added to elements which are on the top corners in the cavity to obtain a more accurate approximation of the boundary condition. Numerical solutions by using conforming finite element are computed for the purposes of comparison. The numerical results are compared with those in the literature and show good agreement. Numerical results computed by using the stable nonconforming P1-P0 pair show excellent accuracy.Contents Abstract i Chapter 1 Introduction 1 1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Model equations . . . . . . . . . . . . . . . . . . . . . . . . . . 3 Chapter 2 Preliminaries 8 2.1 Finite element discretization . . . . . . . . . . . . . . . . . . . . 8 2.2 The stable nonconforming P1-P0 element pair . . . . . . . . . . 10 2.2.1 The P1-nonconforming quadrilateral element . . . . . . 10 2.2.2 The piecewise constant element . . . . . . . . . . . . . . 12 2.2.3 The stable cheapest finite element pair . . . . . . . . . . 13 Chapter 3 Numerical methods for the discretized Navier-Stokes problems 14 3.1 Iterative solvers . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 3.1.1 Krylov subspace methods . . . . . . . . . . . . . . . . . 19 3.1.2 Uzawa method . . . . . . . . . . . . . . . . . . . . . . . 22 3.2 Preconditiong . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 3.2.1 Algebraic multigrid preconditioner . . . . . . . . . . . . 25 3.2.2 Block preconditioners for saddle point problems . . . . . 30 3.3 Test problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 3.3.1 Algebraic multigrid preconditioner . . . . . . . . . . . . 35 3.3.2 The stationary Stokes problem . . . . . . . . . . . . . . 37 Chapter 4 Numerical simulation of lid driven cavity flow 39 4.1 Lid driven square cavity flow problem . . . . . . . . . . . . . . 39 4.2 Indicators for accuracy . . . . . . . . . . . . . . . . . . . . . . . 41 4.3 Implementation of the stable P1 NC-P0 element . . . . . . . . . . 43 4.4 Numerical simulation . . . . . . . . . . . . . . . . . . . . . . . . 46 Chapter 5 Conclusion 85 국문초록 93 감사의 글 94Docto

    Adaptive low and high-order hybridized methods for unsteady incompressible flow simulations

    Get PDF
    Tesi en modalitat de cotutela: Universitat Politècnica de Catalunya i Università degli Studi di PaviaSimulations of incompressible flows are performed on a daily basis to solve problems of practical and industrial interest in several fields of engineering, including automotive, aeronautical, mechanical and biomedical applications. Although finite volume (FV) methods are still the preferred choice by the industry due to their efficiency and robustness, sensitivity to mesh quality and limited accuracy represent two main bottlenecks of these approaches. This is especially critical in the context of transient phenomena, in which FV methods show excessive numerical diffusion. In this context, there has been a growing interest towards high-order discretisation strategies in last decades. In this PhD thesis, a high-order adaptive hybidisable discontinuous Galerkin (HDG) method is proposed for the approximation of steady and unsteady laminar incompressible Navier-Stokes equations. Voigt notation for symmetric second-order tensors is exploited to devise an HDG method for the Cauchy formulation of the momentum equation with optimal convergence properties, even when low-order polynomial degrees of approximation are considered. In addition, a postprocessing strategy accounting for rigid translational and rotational modes is proposed to construct an element-by-element superconvergent velocity field. The discrepancy between the computed and postprocessed velocities is utilised to define a local error indicator to drive degree adaptivity procedures and accurately capture localised features of the flow. The resulting HDG solver is thus extended to the case of transient problems via high-order time integration schemes, namely the explicit singly diagonal implicit Runge-Kutta (ESDIRK) schemes. In this context, the embedded explicit step is exploited to define an inexpensive estimate of the temporal error to devise an efficient timestep control strategy. Finally, in order to efficiently solve the global problem arising from the HDG discretisation, a preconditioned iterative solver is proposed. This is critical in the context of high-order approximations in three-dimensional domains leading to large-scale problems, especially in transient simulations. A block diagonal preconditioner coupled with an inexpensive approximation of the Schur complement of the matrix is proposed to reduce the computational cost of the overall HDG solver. Extensive numerical validation of two and three-dimensional steady and unsteady benchmark tests of viscous laminar incompressible flows is performed to validate the proposed methodology.Simulaciones de flujo incompresible se emplean a diario para resolver problemas de interés práctico e industrial en varios campos de la ingeniería, p.ej. en aplicaciones automovilísticas, aeronáuticas, mecánicas y biomédicas. Aunque los métodos de volúmenes finitos (FV) siguen siendo la opción preferida por la industria debido a su eficiencia y robustez, la sensibilidad a la calidad de la malla y la baja precisión representan dos limitaciones importantes para estas técnicas. Estas limitaciones son todavía más críticas en el contexto de simulaciones de fenómenos transitorios, donde los FV están penalizados por su excesiva difusión numérica. En este contexto, las estrategias de discretización de alto orden han ganado una popularidad creciente en las últimas décadas para problemas transitorios dónde se necesitan soluciones precisas. Esta tesis propone un método de Galerkin discontinuo híbrido (HDG), de alto orden y adaptativo para la aproximación de las ecuaciones de Navier-Stokes incomprensible laminar, en el caso estacionario y transitorio en el entorno de aplicaciones ingenieriles. Para ello, la notación de Voigt para tensores simétricos de segundo orden (habituales en mecánica de los medios continuos) permite introducir un método HDG para la formulación de Cauchy de la ecuación de momento. La novedad de este resultado reside en la convergencia óptima alcanzada por el método, incluso para aproximaciones de orden polinómico bajo. Además, se desarrolla una estrategia de post-proceso local para construir elemento a elemento un campo de velocidad súper-convergente, tomando en cuenta los modos rígidos de traslación y rotación. La discrepancia entre el campo de velocidad calculado y el súper-convergente, obtenido a través del post-proceso, permite definir un indicador del error local. De esta forma, se desarrolla una estrategia para realizar adecuar elemento a elemento el grado de la aproximación polinómica y así mejorar la precisión adaptándose a las características localizadas del flujo. Seguidamente, se extiende el método HDG propuesto al tratamiento de problemas dependientes del tiempo. Más concretamente, se consideran los esquemas de integración temporal de alto orden explicit singly diagonal implicit Runge-Kutta (ESDIRK). En este contexto, se utiliza el paso explícito embedded para calcular una estimación computacionalmente eficiente del error temporal y definir una estrategia de adaptividad del paso de tiempo. Finalmente, se desarrolla un precondicionador adaptado a la estrategia HDG que acelera la convergencia del método iterativo empleado y, de esta forma, obtener resoluciones eficaces del problema global surgido de la discretización HDG. Es importante resaltar la importancia de una herramienta de resolución eficiente para problemas de gran escala en el contexto de aproximaciones de alto orden y en dominios tridimensionales. Estas herramientas se hacen aún más criticas en simulaciones transitorias. Más concretamente, se proponen un precondicionador diagonal por bloques y una aproximación eficiente del complemento Schur de la matriz para reducir el coste computacional del método HDG. Para validar la metodología propuesta, se realizan varias simulaciones numéricas de flujo incompresible laminar viscoso, para problemas estacionarios y transitorios, en dos y tres dimensiones.Postprint (published version
    corecore