189 research outputs found

    On the Accuracy of First-Order Numerical Derivatives in Multidimensional Digital Waveguide Mesh Topologies

    Get PDF
    Digital waveguide mesh (DWM) models are numerical solvers for the wave equation in N-dimensions. They are used for obtaining the traveling-wave solution in practical acoustical modeling applications. Although unstructured meshes can be used with DWMs, regular mesh topologies are traditionally used due to their implementation simplicity. This letter discusses the accuracy of first-order approximations to numerical derivatives on more general unstructured mesh topologies. The results are applied to structured, regular mesh topologies as used in DWM modeling. A comparison of 2-D and 3-D DWM topologies with respect to the accuracy of first-order approximations to numerical derivatives is presented

    Contributions to discrete-time methods for room acoustic simulation

    Full text link
    The sound field distribution in a room is the consequence of the acoustic properties of radiating sources and the position, geometry and absorbing characteristics of the surrounding boundaries in an enclosure (boundary conditions). Despite there existing a consolidated acoustic wave theory, it is very difficult, nearly impossible, to find an analytical expression of the sound variables distribution in a real room, as a function of time and position. This scenario represents as an inhomogeneous boundary value problem, where the complexity of source properties and boundary conditions make that problem extremely hard to solve. Room acoustic simulation, as treated in this thesis, comprises the algebraical approach to solve the wave equation, and the way to define the boundary conditions and source modeling of the scenario under analysis. Numerical methods provide accurate algorithms for this purpose and among the different possibilities, the use of discrete-time methods arises as a suitable solution for solving those partial differential equations, particularized by some specific constrains. Together with the constant growth of computer power, those methods are increasing their suitability for room acoustic simulation. However, there exists an important lack of accuracy in the definition of some of these conditions so far: current frequency-dependent boundary conditions do not comply with any physical model, and directive sources in discrete-time methods have been hardly treated. This thesis discusses about the current state-of-the-art of the boundary conditions and source modeling in discrete-time methods for room acoustic simulation, and it contributes some algorithms to enhance boundary condition formulation, in a locally reacting impedance sense, and source modelling in terms of directive sources under a defined radiation pattern. These algorithms have been particularized to some discrete-time methods such as the Finite Difference Time Domain and the Digital Waveguide Mesh.Escolano Carrasco, J. (2008). Contributions to discrete-time methods for room acoustic simulation [Tesis doctoral no publicada]. Universitat PolitĂšcnica de ValĂšncia. https://doi.org/10.4995/Thesis/10251/8309Palanci

    Conformal electromagnetic wave propagation using primal mimetic finite elements

    Get PDF
    Elektromagnetische Wellenausbreitung bildet die physikalische Grundlage fĂŒr unzĂ€hlige Anwendungen in verschiedenen Bereichen der heutigen Welt. Um rĂ€umliche Szenarien zu modellieren, muss der kontinuierliche Raum in geeigneter Weise in ein Rechengebiet umgewandelt werden. Üblich diskretisierte Modelle – welche auf verschiedenen GrĂ¶ĂŸen beruhen – berĂŒcksichtigen die Beziehungen zwischen Feldvariablen mittels Relationen, welche durch partielle Differentialgleichungen reprĂ€sentiert werden. Um mathematische Beziehungen zwischen abhĂ€ngigen Variablen in zweckdienlicher Art nachzubilden, schaffen hyperkomplexe Zahlensysteme ein passendes alternatives Rahmenwerk. Dieser Ansatz bezweckt das Einbinden bestimmter Systemeigenschaften und umfasst zusĂ€tzlich zur Modellierung von Feldproblemen, bei denen alle Variablen vorkommen, auch vereinfachte Modelle. Um eine wettbewerbsfĂ€hige Alternative zur ĂŒblichen numerischen Behandlung elektromagnetischer Felder in beobachtungsorientierter Weise darzubieten, wird das elektrische und magnetische Feld elektromagnetischer Wellenfelder als eine zusammengefasste FeldgrĂ¶ĂŸe, eingebettet im Funktionenraum, verstanden. Dieses Vorgehen ist intuitiv, da beide Felder in der Elektrodynamik gemeinsam auftreten und direkt messbar sind. Der Schwerpunkt dieser Arbeit ist in zwei Ziele untergliedert. Auf der einen Seite wird ein umformuliertes Maxwell-System in einer metrikfreien Umgebung mittels dem sogenannten „bikomplexen Ansatz“ umfassend untersucht. Auf der anderen Seite wird eine mögliche numerische Implementierung hinsichtlich der Finite-Elemente-Methode auf modernem Wege durch Nutzung der diskreten Ă€ußeren Analysis mit Fokus auf Genauigkeitsbelange bewertet. Hinsichtlich der numerischen Genauigkeitsbewertung wird demonstriert, dass der vorgelegte Ansatz grundsĂ€tzlich eine höhere Exaktheit zeigt, wenn man ihn mit Formulierungen vergleicht, welche auf der Helmholtz-Gleichung beruhen. Diese Dissertation trĂ€gt eine generalisierte hyperkomplexe alternative Darstellung von gewöhnlichen elektrodynamischen Ausdrucksweisen zum Themengebiet der Wellenausbreitung bei. Durch die Nutzung einer direkten Formulierung des elektrischen Feldes in Verbindung mit dem magnetischen Feld wird die Rechengenauigkeit von Randwertproblemen erhöht. Um diese Genauigkeitserhöhung zu erreichen, wird eine geeignete Erweiterung der de Rham-Kohomologie unterbreitet.Electromagnetic wave propagation provides the physical basis for countless applications in various subjects of today’s world. In order to model spatial scenarios, the continuous space must be converted to an appropriate computational domain. Ordinarily discretized models – which are based on distinct quantities – consider the connection between field variables by relations which are represented by partial differential equations. To reproduce mathematical relationships between dependent variables in a convenient manner, hypercomplex number systems build a suitable alternative framework. This approach aims to incorporate certain system properties and covers, in addition to the modeling of field problems where all variables are present, also simplified models. To provide a competitive alternative to the ordinary numerical handling of electromagnetic fields in an observation-based way, the electric and magnetic field of electromagnetic wave fields is understood as only one combined field variable embedded in the function space. This procedure is intuitive since both fields occur together in electrodynamics and are directly measureable. The focus of this thesis is twofold. On the one side, a reformulated Maxwell system is broadly investigated in a metric-free environment by the use of the so-called ”bicomplex approach”. On the other side, a possible numerical implementation concerning the Finite Element Method is evaluated in a modern way by the use of discrete exterior calculus with focus on accuracy matters. Regarding the numerical accuracy evaluation, it is demonstrated that the presented approach yields a higher exactness in general when comparing it to formulations which are based on the Helmholtz equation. This thesis contributes generalized hypercomplex alternative representations of ordinary electrodynamic expressions to the topic of wave propagation. By the use of a direct formulation of the electric field in conjunction with the magnetic field, the computational accuracy of boundary value problems is improved. In order to achieve this increase of accuracy, an appropriate enhancement of the de Rham cohomology is proposed

    Finite difference and finite volume methods for wave-based modelling of room acoustics

    Get PDF
    Wave-based models of sound propagation can be used to predict and synthesize sounds as they would be heard naturally in room acoustic environments. The numerical simulation of such models with traditional time-stepping grid-based methods can be an expensive process, due to the sheer size of listening environments (e.g., auditoriums and concert halls) and due to the temporal resolution required by audio rates that resolve frequencies up to the limit of human hearing. Finite difference methods comprise a simple starting point for such simulations, but they are known to suffer from approximation errors that may necessitate expensive grid refinements in order to achieve sufficient levels of accuracy. As such, a significant amount of research has gone into designing finite difference methods that are highly accurate while remaining computationally efficient. The problem of designing and using accurate finite difference schemes is compounded by the fact that room acoustics models require complex boundary conditions to model frequency-dependent wall impedances over non-trivial geometries. The implementation of such boundary conditions in a numerically stable manner has been a challenge for some time. Stable boundary conditions for finite difference room acoustics simulations have been formulated in the past, but generally they have only been useful in modelling trivial geometries (e.g., idealised shoebox halls). Finite volume methods have recently been shown to be a viable solution to the problem of complex boundary conditions over non-trivial geometries, and they also allow for the use of energy methods for numerical stability analyses. Finite volume methods lend themselves naturally to fully unstructured grids and they can simplify to the types of grids typically used in finite difference methods. This allows for room acoustics simulation models that balance the simplicity of finite difference methods for wave propagation in air with the detail of finite volume methods for the modelling of complex boundaries. This thesis is an exploration of these two distinct, yet related, approaches to wave-based room acoustic simulations. The overarching theme in this investigation is the balance between accuracy, computational efficiency, and numerical stability. Higher-order and optimised schemes in two and three spatial dimensions are derived and compared, towards the goal of finding accurate and efficient finite difference schemes. Numerical stability is analysed using frequency-domain analyses, as well as energy techniques whenever possible, allowing for stable and frequency-dependent boundary conditions appropriate for room acoustics modelling. Along the way, the use of non-Cartesian grids is investigated, geometric relationships between certain finite difference and finite volume schemes are explored, and some problems associated to staircasing effects at boundaries are considered. Also, models of sound absorption in air are incorporated into these numerical schemes, using physical parameters that are appropriate for room acoustic scenarios

    Newton-Raphson Solution of Nonlinear Delay-Free Loop Filter Networks

    Get PDF
    For their numerical properties and speed of convergence, Newton-Raphson methods are frequently used to compute nonlinear audio electronic circuit models in the digital domain. These methods are traditionally employed regardless of preliminary considerations about their applicability, primarily because of a lack of flexible mathematical tools making the convergence analysis an easy task. We define the basin delimiter, a tool that can be applied to the case when the nonlinear circuit is modeled by a delay-free loop network. This tool is derived from a known convergence theorem providing a sufficient condition for quadratic speed of convergence of the method. After substituting the nonlinear characteristics with equivalent linear filters that compute Newton-Raphson on the existing network, through the basin delimiter, we figure out constraints guaranteeing quadratic convergence speed in the diode clipper. Further application to a ring modulator circuit does not lead to comparably useful constraints for quadratic convergence; however, also in this circuit, the basin delimiter has a magnitude roughly proportional to the number of iterations needed by the solver to find a solution. Together, such case studies foster refinement and generalization of this tool as a speed predictor, with potential application to the design of virtual analogue systems for real-time digital audio effects

    Adjoint Techniques for Sensitivity Analysis in High-Frequency Structure CAD

    Full text link

    Efficient Hybrid Virtual Room Acoustic Modelling

    Get PDF
    This thesis investigates approaches to virtual room acoustic modelling and auralisation in order to a develop hybrid modelling solution that is capable of efficient and accurate simulation of enclosed sound propagation. Emphasis is placed on the advantages and disadvantages of state of the art numerical and geometric acoustic modelling methods. Numerical methods have been shown to preserve important sound wave characteristics such as diffraction and room modes, and are considered more accurate for low frequency acoustic modelling than geometric techniques which fail to preserve such wave effects. However, the implementation of numerical acoustic models inherently requires large computational effort compared to more efficient geometric techniques such as ray-tracing. This is particularly problematic for simulations of large-scale 3D acoustic environments and for high spatio-temporal sampling rates. A novel acoustic modelling solution is presented, which seeks to circumvent the disadvantageous computational requirements of 3D numerical models while producing a suitable approximation to low frequency sound behaviour. This modelling technique incorporates multiple planar cross-sectional 2D Finite Difference schemes that are utilised in combination to synthesise low frequency wave propagation throughout the target acoustic field. In this way a subset of prominent low frequency sound wave characteristics may be emulated with low computational cost compared to 3D numerical schemes. These low-frequency results can then be combined with the high-frequency output from efficient geometric simulations to create a hybrid model providing accurate broadband results at a relatively low computational cost. Investigation of room impulse response rendering for a series of theoretic and real spaces demonstrates advantages of this new hybrid acoustic modelling technique over purely ray-based methods in terms of low frequency accuracy, and over 3D numerical methods in terms of computational efficiency. Conclusions are drawn from objective measurements obtained from simulation results of the virtual models produced. Results demonstrate the applicability of the novel hybrid approach to the enhancement of purely ray-based room impulse response rendering by which a more realistic representation of low frequency wave phenomena may be simulated in an efficient manner, improving the theoretical accuracy of objective and audible results. This study contributes towards research and design of high-speed, interactive virtual acoustic simulations appropriate for industrial and creative virtual reality applications

    International Workshop on Finite Elements for Microwave Engineering

    Get PDF
    When Courant prepared the text of his 1942 address to the American Mathematical Society for publication, he added a two-page Appendix to illustrate how the variational methods first described by Lord Rayleigh could be put to wider use in potential theory. Choosing piecewise-linear approximants on a set of triangles which he called elements, he dashed off a couple of two-dimensional examples and the finite element method was born. 
 Finite element activity in electrical engineering began in earnest about 1968-1969. A paper on waveguide analysis was published in Alta Frequenza in early 1969, giving the details of a finite element formulation of the classical hollow waveguide problem. It was followed by a rapid succession of papers on magnetic fields in saturable materials, dielectric loaded waveguides, and other well-known boundary value problems of electromagnetics. 
 In the decade of the eighties, finite element methods spread quickly. In several technical areas, they assumed a dominant role in field problems. P.P. Silvester, San Miniato (PI), Italy, 1992 Early in the nineties the International Workshop on Finite Elements for Microwave Engineering started. This volume contains the history of the Workshop and the Proceedings of the 13th edition, Florence (Italy), 2016 . The 14th Workshop will be in Cartagena (Colombia), 2018
    • 

    corecore