8 research outputs found

    Diversity techniques for broadband wireless communications: performance enhancement and analysis

    Get PDF
    The diversity techniques have been proven to be effective for next generation broadband wireless communications, and are the focus of this thesis. The diversity techniques can be broadly categorized into three types: Space, Time, and Frequency. In this thesis, we are mainly concerned with frequency and space diversity techniques. Orthogonal Frequency Division Multiplexing (OFDM) is a frequency diversity technique which offers several benefits such as easier digital implementation, immunity to multipath channels, low complexity channel equalization, etc. Despite these desirable features, there are few inherent problems in OFDM such as high peak-to-average power ratio (PAPR). High PAPR demands large dynamic range in the transmitted chain such as digital to analog converter (DAC) and power amplifier (PA). Unless pre-processed, the transmitted signal gets distorted due to quantization errors and inter-modulation. In the initial stage of PhD candidature, the author focused on PAPR reduction techniques. A simple modification on conventional iterative clipping and filtering (ICF) technique was proposed which has less computational complexity. The power savings achievable from clipping and filtering method was considered next. Furthermore the ICF is compared with another distortion-less PAPR reduction technique called Selective Mapping (SLM) based on power savings. Finally, impact of clipping and filtering on the channel estimation was analyzed. Space diversity seeks to exploit the multi-path characteristics of wireless channels to improve the performance. The simplest form of the space diversity is the receive diversity where two or more antennas with sufficient spacing collect independent copies of the same transmitted signal, which contributes to better signal reception. In this thesis new analytical expressions for spectral efficiency, capacity, and error rates were presented for adaptive systems with channel estimation error. Beamforming (steering signal towards desired receiver) is another useful technique in multiple-antenna systems to further improve the system performance. MRT (Maximal Ratio Transmission) or MIMO-MRC is such system where the transmitter, based on channel feedback from the receiver, uses weighting factors to steer the transmitted signal. Closed form expressions for symbol error rates were derived for MRT system with channel estimation error. The results were extended to evaluate closed form expressions of error rates for Rectangular QAM. Antenna correlation was considered in another contribution on MRC systems. Relay and Cooperative networks represent another form of spatial diversity and have recently attracted significant research attention. These networks rely on intermediate nodes called "relays" to establish communication between the source and the destination. In addition to coverage extension, the relay networks have shown to offer cooperative diversity when there is a direct link or multiple relays. The first contribution is to analyze a dual-hop amplify-forward relay networks with dissimilar fading scenarios. Next error rates of Rectangular QAM for decode-forward selection relay system are derived. Multiple antenna at relay is included to analyze the benefits of dual spatial diversity over Rayleigh and Nakagami fading channels. Antenna selection is a cost-effective way to exploit the antenna diversity. General Order Antenna Selection (GOAS), based on Ordered Statistics, is used to evaluate signal statistics for a MIMO relay network

    Multiuser Relaying over Mixed RF/FSO Links

    Full text link

    On the energy efficiency of spatial modulation concepts

    Get PDF
    Spatial Modulation (SM) is a Multiple-Input Multiple-Output (MIMO) transmission technique which realizes low complexity implementations in wireless communication systems. Due the transmission principle of SM, only one Radio Frequency (RF) chain is required in the transmitter. Therefore, the complexity of the transmitter is lower compared to the complexity of traditional MIMO schemes, such as Spatial MultipleXing (SMX). In addition, because of the single RF chain configuration of SM, only one Power Amplifier (PA) is required in the transmitter. Hence, SM has the potential to exhibit significant Energy Efficiency (EE) benefits. At the receiver side, due to the SM transmission mechanism, detection is conducted using a low complexity (single stream) Maximum Likelihood (ML) detector. However, despite the use of a single stream detector, SM achieves a multiplexing gain. A point-to-point closed-loop variant of SM is receive space modulation. In receive space modulation, the concept of SMis extended at the receiver side, using linear precoding with Channel State Information at the Transmitter (CSIT). Even though receive space modulation does not preserve the single RF chain configuration of SM, due to the deployed linear precoding, it can be efficiently incorporated in a Space Division Multiple Access (SDMA) or in a Virtual Multiple-Input Multiple-Output (VMIMO) architecture. Inspired by the potentials of SM, the objectives of this thesis are the evaluation of the EE of SM and its extension in different forms of MIMO communication. In particular, a realistic power model for the power consumption of a Base Station (BS) is deployed in order to assess the EE of SM in terms of Mbps/J. By taking into account the whole power supply of a BS and considering a Time Division Multiple Access (TDMA) multiple access scheme, it is shown that SM is significantly more energy efficient compared to the traditional MIMO techniques. In the considered system setup, it is shown that SM is up to 67% more energy efficient compared to the benchmark systems. In addition, the concept of space modulation is researched at the receiver side. Specifically, based on the union bound technique, a framework for the evaluation of the Average Bit Error Probability (ABEP), diversity order, and coding gain of receive space modulation is developed. Because receive space modulation deploys linear precoding with CSIT, two new precoding methods which utilize imperfect CSIT are proposed. Furthermore, in this thesis, receive space modulation is incorporated in the broadcast channel. The derivation of the theoretical ABEP, diversity order, and coding gain of the new broadcast scheme is provided. It is concluded that receive space modulation is able to outperform the corresponding traditional MIMO scheme. Finally, SM, receive space modulation, and relaying are combined in order to form a novel virtual MIMO architecture. It is shown that the new architecture practically eliminates or reduces the problem of the inefficient relaying of the uncoordinated virtual MIMO space modulation architectures. This is undertaken by using precoding in a novel fashion. The evaluation of the new architecture is conducted using simulation and theoretical results

    Radio Communications

    Get PDF
    In the last decades the restless evolution of information and communication technologies (ICT) brought to a deep transformation of our habits. The growth of the Internet and the advances in hardware and software implementations modified our way to communicate and to share information. In this book, an overview of the major issues faced today by researchers in the field of radio communications is given through 35 high quality chapters written by specialists working in universities and research centers all over the world. Various aspects will be deeply discussed: channel modeling, beamforming, multiple antennas, cooperative networks, opportunistic scheduling, advanced admission control, handover management, systems performance assessment, routing issues in mobility conditions, localization, web security. Advanced techniques for the radio resource management will be discussed both in single and multiple radio technologies; either in infrastructure, mesh or ad hoc networks

    Securing Multi-Layer Communications: A Signal Processing Approach

    Get PDF
    Security is becoming a major concern in this information era. The development in wireless communications, networking technology, personal computing devices, and software engineering has led to numerous emerging applications whose security requirements are beyond the framework of conventional cryptography. The primary motivation of this dissertation research is to develop new approaches to the security problems in secure communication systems, without unduly increasing the complexity and cost of the entire system. Signal processing techniques have been widely applied in communication systems. In this dissertation, we investigate the potential, the mechanism, and the performance of incorporating signal processing techniques into various layers along the chain of secure information processing. For example, for application-layer data confidentiality, we have proposed atomic encryption operations for multimedia data that can preserve standard compliance and are friendly to communications and delegate processing. For multimedia authentication, we have discovered the potential key disclosure problem for popular image hashing schemes, and proposed mitigation solutions. In physical-layer wireless communications, we have discovered the threat of signal garbling attack from compromised relay nodes in the emerging cooperative communication paradigm, and proposed a countermeasure to trace and pinpoint the adversarial relay. For the design and deployment of secure sensor communications, we have proposed two sensor location adjustment algorithms for mobility-assisted sensor deployment that can jointly optimize sensing coverage and secure communication connectivity. Furthermore, for general scenarios of group key management, we have proposed a time-efficient key management scheme that can improve the scalability of contributory key management from O(log n) to O(log(log n)) using scheduling and optimization techniques. This dissertation demonstrates that signal processing techniques, along with optimization, scheduling, and beneficial techniques from other related fields of study, can be successfully integrated into security solutions in practical communication systems. The fusion of different technical disciplines can take place at every layer of a secure communication system to strengthen communication security and improve performance-security tradeoff
    corecore