161 research outputs found

    On the AER Convolution Processors for FPGA

    Get PDF
    Image convolution operations in digital computer systems are usually very expensive operations in terms of resource consumption (processor resources and processing time) for an efficient Real-Time application. In these scenarios the visual information is divided into frames and each one has to be completely processed before the next frame arrives in order to warranty the real-time. A spike-based philosophy for computing convolutions based on the neuro-inspired Address-Event- Representation (AER) is achieving high performances. In this paper we present two FPGA implementations of AER-based convolution processors for relatively small Xilinx FPGAs (Spartan-II 200 and Spartan-3 400), which process 64x64 images with 11x11 convolution kernels. The maximum equivalent operation rate that can be reached is 163.51 MOPS for 11x11 kernels, in a Xilinx Spartan 3 400 FPGA with a 50MHz clock. Formulations, hardware architecture, operation examples and performance comparison with frame-based convolution processors are presented and discussed.Ministerio de Ciencia e Innovación TEC2006-11730-C03-02Ministerio de Ciencia e Innovación TEC2009-10639-C04-02Junta de Andalucía P06-TIC-0141

    FPGA Implementations Comparison of Neuro-cortical Inspired Convolution Processors for Spiking Systems

    Get PDF
    Image convolution operations in digital computer systems are usually very expensive operations in terms of resource consumption (processor resources and processing time) for an efficient Real-Time application. In these scenarios the visual information is divided in frames and each one has to be completely processed before the next frame arrives. Recently a new method for computing convolutions based on the neuro-inspired philosophy of spiking systems (Address-Event-Representation systems, AER) is achieving high performances. In this paper we present two FPGA implementations of AERbased convolution processors that are able to work with 64x64 images and programmable kernels of up to 11x11 elements. The main difference is the use of RAM for integrators in one solution and the absence of integrators in the second solution that is based on mapping operations. The maximum equivalent operation rate is 163.51 MOPS for 11x11 kernels, in a Xilinx Spartan 3 400 FPGA with a 50MHz clock. Formulations, hardware architecture, operation examples and performance comparison with frame-based convolution processors are presented and discussed.Ministerio de Ciencia e Innovación TEC2006-11730-C03-02Junta de Andalucía P06-TIC-0141

    Visual Spike-based Convolution Processing with a Cellular Automata Architecture

    Get PDF
    this paper presents a first approach for implementations which fuse the Address-Event-Representation (AER) processing with the Cellular Automata using FPGA and AER-tools. This new strategy applies spike-based convolution filters inspired by Cellular Automata for AER vision processing. Spike-based systems are neuro-inspired circuits implementations traditionally used for sensory systems or sensor signal processing. AER is a neuromorphic communication protocol for transferring asynchronous events between VLSI spike-based chips. These neuro-inspired implementations allow developing complex, multilayer, multichip neuromorphic systems and have been used to design sensor chips, such as retinas and cochlea, processing chips, e.g. filters, and learning chips. Furthermore, Cellular Automata is a bio-inspired processing model for problem solving. This approach divides the processing synchronous cells which change their states at the same time in order to get the solution.Ministerio de Educación y Ciencia TEC2006-11730-C03-02Ministerio de Ciencia e Innovación TEC2009-10639-C04-02Junta de Andalucía P06-TIC-0141

    An AER Spike-Processing Filter Simulator and Automatic VHDL Generator Based on Cellular Automata

    Get PDF
    Spike-based systems are neuro-inspired circuits implementations traditionally used for sensory systems or sensor signal processing. Address-Event- Representation (AER) is a neuromorphic communication protocol for transferring asynchronous events between VLSI spike-based chips. These neuro-inspired implementations allow developing complex, multilayer, multichip neuromorphic systems and have been used to design sensor chips, such as retinas and cochlea, processing chips, e.g. filters, and learning chips. Furthermore, Cellular Automata (CA) is a bio-inspired processing model for problem solving. This approach divides the processing synchronous cells which change their states at the same time in order to get the solution. This paper presents a software simulator able to gather several spike-based elements into the same workspace in order to test a CA architecture based on AER before a hardware implementation. Furthermore this simulator produces VHDL for testing the AER-CA into the FPGA of the USBAER AER-tool.Ministerio de Ciencia e Innovación TEC2009-10639-C04-0

    Spiking row-by-row FPGA Multi-kernel and Multi-layer Convolution Processor.

    Get PDF
    Spiking convolutional neural networks have become a novel approach for machine vision tasks, due to the latency to process an input stimulus from a scene, and the low power consumption of these kind of solutions. Event-based systems only perform sum operations instead of sum of products of framebased systems. In this work an upgrade of a neuromorphic event-based convolution accelerator for SCNN, which is able to perform multiple layers with different kernel sizes, is presented. The system has a latency per layer from 1.44 μs to 9.98μs for kernel sizes from 1x1 to 7x7

    Musical notes classification with Neuromorphic Auditory System using FPGA and a Convolutional Spiking Network

    Get PDF
    In this paper, we explore the capabilities of a sound classification system that combines both a novel FPGA cochlear model implementation and a bio-inspired technique based on a trained convolutional spiking network. The neuromorphic auditory system that is used in this work produces a form of representation that is analogous to the spike outputs of the biological cochlea. The auditory system has been developed using a set of spike-based processing building blocks in the frequency domain. They form a set of band pass filters in the spike-domain that splits the audio information in 128 frequency channels, 64 for each of two audio sources. Address Event Representation (AER) is used to communicate the auditory system with the convolutional spiking network. A layer of convolutional spiking network is developed and trained on a computer with the ability to detect two kinds of sound: artificial pure tones in the presence of white noise and electronic musical notes. After the training process, the presented system is able to distinguish the different sounds in real-time, even in the presence of white noise.Ministerio de Economía y Competitividad TEC2012-37868-C04-0

    An Approach to Distance Estimation with Stereo Vision Using Address-Event-Representation

    Get PDF
    Image processing in digital computer systems usually considers the visual information as a sequence of frames. These frames are from cameras that capture reality for a short period of time. They are renewed and transmitted at a rate of 25-30 fps (typical real-time scenario). Digital video processing has to process each frame in order to obtain a result or detect a feature. In stereo vision, existing algorithms used for distance estimation use frames from two digital cameras and process them pixel by pixel to obtain similarities and differences from both frames; after that, depending on the scene and the features extracted, an estimate of the distance of the different objects of the scene is calculated. Spike-based processing is a relatively new approach that implements the processing by manipulating spikes one by one at the time they are transmitted, like a human brain. The mammal nervous system is able to solve much more complex problems, such as visual recognition by manipulating neuron spikes. The spike-based philosophy for visual information processing based on the neuro-inspired Address-Event-Representation (AER) is achieving nowadays very high performances. In this work we propose a two- DVS-retina system, composed of other elements in a chain, which allow us to obtain a distance estimation of the moving objects in a close environment. We will analyze each element of this chain and propose a Multi Hold&Fire algorithm that obtains the differences between both retinas.Ministerio de Ciencia e Innovación TEC2009-10639-C04-0

    Real-time motor rotation frequency detection with event-based visual and spike-based auditory AER sensory integration for FPGA

    Get PDF
    Multisensory integration is commonly used in various robotic areas to collect more environmental information using different and complementary types of sensors. Neuromorphic engineers mimics biological systems behavior to improve systems performance in solving engineering problems with low power consumption. This work presents a neuromorphic sensory integration scenario for measuring the rotation frequency of a motor using an AER DVS128 retina chip (Dynamic Vision Sensor) and a stereo auditory system on a FPGA completely event-based. Both of them transmit information with Address-Event-Representation (AER). This integration system uses a new AER monitor hardware interface, based on a Spartan-6 FPGA that allows two operational modes: real-time (up to 5 Mevps through USB2.0) and data logger mode (up to 20Mevps for 33.5Mev stored in onboard DDR RAM). The sensory integration allows reducing prediction error of the rotation speed of the motor since audio processing offers a concrete range of rpm, while DVS can be much more accurate.Ministerio de Economía y Competitividad TEC2012-37868-C04-02/0

    An AER handshake-less modular infrastructure PCB with x8 2.5Gbps LVDS serial links

    Get PDF
    Nowadays spike-based brain processing emulation is taking off. Several EU and others worldwide projects are demonstrating this, like SpiNNaker, BrainScaleS, FACETS, or NeuroGrid. The larger the brain process emulation on silicon is, the higher the communication performance of the hosting platforms has to be. Many times the bottleneck of these system implementations is not on the performance inside a chip or a board, but in the communication between boards. This paper describes a novel modular Address-Event-Representation (AER) FPGA-based (Spartan6) infrastructure PCB (the AER-Node board) with 2.5Gbps LVDS high speed serial links over SATA cables that offers a peak performance of 32-bit 62.5Meps (Mega events per second) on board-to-board communications. The board allows back compatibility with parallel AER devices supporting up to x2 28-bit parallel data with asynchronous handshake. These boards also allow modular expansion functionality through several daughter boards. The paper is focused on describing in detail the LVDS serial interface and presenting its performance.Ministerio de Ciencia e Innovación TEC2009-10639-C04-02/01Ministerio de Economía y Competitividad TEC2012-37868-C04-02/01Junta de Andalucía TIC-6091Ministerio de Economía y Competitividad PRI-PIMCHI-2011-076

    Dynamic Vision Sensor integration on FPGA-based CNN accelerators for high-speed visual classification

    Get PDF
    Deep-learning is a cutting edge theory that is being applied to many fields. For vision applications the Convolutional Neural Networks (CNN) are demanding significant accuracy for classification tasks. Numerous hardware accelerators have populated during the last years to improve CPU or GPU based solutions. This technology is commonly prototyped and tested over FPGAs before being considered for ASIC fabrication for mass production. The use of commercial typical cameras (30fps) limits the capabilities of these systems for high speed applications. The use of dynamic vision sensors (DVS) that emulate the behavior of a biological retina is taking an incremental importance to improve this applications due to its nature, where the information is represented by a continuous stream of spikes and the frames to be processed by the CNN are constructed collecting a fixed number of these spikes (called events). The faster an object is, the more events are produced by DVS, so the higher is the equivalent frame rate. Therefore, these DVS utilization allows to compute a frame at the maximum speed a CNN accelerator can offer. In this paper we present a VHDL/HLS description of a pipelined design for FPGA able to collect events from an Address-Event-Representation (AER) DVS retina to obtain a normalized histogram to be used by a particular CNN accelerator, called NullHop. VHDL is used to describe the circuit, and HLS for computation blocks, which are used to perform the normalization of a frame needed for the CNN. Results outperform previous implementations of frames collection and normalization using ARM processors running at 800MHz on a Zynq7100 in both latency and power consumption. A measured 67% speedup factor is presented for a Roshambo CNN real-time experiment running at 160fps peak rate.Comment: 7 page
    corecore