609 research outputs found

    Uncertainty Relations for Shift-Invariant Analog Signals

    Full text link
    The past several years have witnessed a surge of research investigating various aspects of sparse representations and compressed sensing. Most of this work has focused on the finite-dimensional setting in which the goal is to decompose a finite-length vector into a given finite dictionary. Underlying many of these results is the conceptual notion of an uncertainty principle: a signal cannot be sparsely represented in two different bases. Here, we extend these ideas and results to the analog, infinite-dimensional setting by considering signals that lie in a finitely-generated shift-invariant (SI) space. This class of signals is rich enough to include many interesting special cases such as multiband signals and splines. By adapting the notion of coherence defined for finite dictionaries to infinite SI representations, we develop an uncertainty principle similar in spirit to its finite counterpart. We demonstrate tightness of our bound by considering a bandlimited lowpass train that achieves the uncertainty principle. Building upon these results and similar work in the finite setting, we show how to find a sparse decomposition in an overcomplete dictionary by solving a convex optimization problem. The distinguishing feature of our approach is the fact that even though the problem is defined over an infinite domain with infinitely many variables and constraints, under certain conditions on the dictionary spectrum our algorithm can find the sparsest representation by solving a finite-dimensional problem.Comment: Accepted to IEEE Trans. on Inform. Theor

    A Primal-Dual Proximal Algorithm for Sparse Template-Based Adaptive Filtering: Application to Seismic Multiple Removal

    Get PDF
    Unveiling meaningful geophysical information from seismic data requires to deal with both random and structured "noises". As their amplitude may be greater than signals of interest (primaries), additional prior information is especially important in performing efficient signal separation. We address here the problem of multiple reflections, caused by wave-field bouncing between layers. Since only approximate models of these phenomena are available, we propose a flexible framework for time-varying adaptive filtering of seismic signals, using sparse representations, based on inaccurate templates. We recast the joint estimation of adaptive filters and primaries in a new convex variational formulation. This approach allows us to incorporate plausible knowledge about noise statistics, data sparsity and slow filter variation in parsimony-promoting wavelet frames. The designed primal-dual algorithm solves a constrained minimization problem that alleviates standard regularization issues in finding hyperparameters. The approach demonstrates significantly good performance in low signal-to-noise ratio conditions, both for simulated and real field seismic data

    Low Complexity Regularization of Linear Inverse Problems

    Full text link
    Inverse problems and regularization theory is a central theme in contemporary signal processing, where the goal is to reconstruct an unknown signal from partial indirect, and possibly noisy, measurements of it. A now standard method for recovering the unknown signal is to solve a convex optimization problem that enforces some prior knowledge about its structure. This has proved efficient in many problems routinely encountered in imaging sciences, statistics and machine learning. This chapter delivers a review of recent advances in the field where the regularization prior promotes solutions conforming to some notion of simplicity/low-complexity. These priors encompass as popular examples sparsity and group sparsity (to capture the compressibility of natural signals and images), total variation and analysis sparsity (to promote piecewise regularity), and low-rank (as natural extension of sparsity to matrix-valued data). Our aim is to provide a unified treatment of all these regularizations under a single umbrella, namely the theory of partial smoothness. This framework is very general and accommodates all low-complexity regularizers just mentioned, as well as many others. Partial smoothness turns out to be the canonical way to encode low-dimensional models that can be linear spaces or more general smooth manifolds. This review is intended to serve as a one stop shop toward the understanding of the theoretical properties of the so-regularized solutions. It covers a large spectrum including: (i) recovery guarantees and stability to noise, both in terms of â„“2\ell^2-stability and model (manifold) identification; (ii) sensitivity analysis to perturbations of the parameters involved (in particular the observations), with applications to unbiased risk estimation ; (iii) convergence properties of the forward-backward proximal splitting scheme, that is particularly well suited to solve the corresponding large-scale regularized optimization problem

    Quantitative Robust Uncertainty Principles and Optimally Sparse Decompositions

    Get PDF
    We develop a robust uncertainty principle for finite signals in C^N which states that for almost all subsets T,W of {0,...,N-1} such that |T|+|W| ~ (log N)^(-1/2) N, there is no sigal f supported on T whose discrete Fourier transform is supported on W. In fact, we can make the above uncertainty principle quantitative in the sense that if f is supported on T, then only a small percentage of the energy (less than half, say) of its Fourier transform is concentrated on W. As an application of this robust uncertainty principle (QRUP), we consider the problem of decomposing a signal into a sparse superposition of spikes and complex sinusoids. We show that if a generic signal f has a decomposition using spike and frequency locations in T and W respectively, and obeying |T| + |W| <= C (\log N)^{-1/2} N, then this is the unique sparsest possible decomposition (all other decompositions have more non-zero terms). In addition, if |T| + |W| <= C (\log N)^{-1} N, then this sparsest decomposition can be found by solving a convex optimization problem.Comment: 25 pages, 9 figure

    The achievable performance of convex demixing

    Get PDF
    Demixing is the problem of identifying multiple structured signals from a superimposed, undersampled, and noisy observation. This work analyzes a general framework, based on convex optimization, for solving demixing problems. When the constituent signals follow a generic incoherence model, this analysis leads to precise recovery guarantees. These results admit an attractive interpretation: each signal possesses an intrinsic degrees-of-freedom parameter, and demixing can succeed if and only if the dimension of the observation exceeds the total degrees of freedom present in the observation
    • …
    corecore