473 research outputs found

    Kernel Bounds for Path and Cycle Problems

    Full text link
    Connectivity problems like k-Path and k-Disjoint Paths relate to many important milestones in parameterized complexity, namely the Graph Minors Project, color coding, and the recent development of techniques for obtaining kernelization lower bounds. This work explores the existence of polynomial kernels for various path and cycle problems, by considering nonstandard parameterizations. We show polynomial kernels when the parameters are a given vertex cover, a modulator to a cluster graph, or a (promised) max leaf number. We obtain lower bounds via cross-composition, e.g., for Hamiltonian Cycle and related problems when parameterized by a modulator to an outerplanar graph

    Fractals for Kernelization Lower Bounds, With an Application to Length-Bounded Cut Problems

    Get PDF
    Bodlaender et al.\u27s [Bodlaender/Jansen/Kratsch,2014] cross-composition technique is a popular method for excluding polynomial-size problem kernels for NP-hard parameterized problems. We present a new technique exploiting triangle-based fractal structures for extending the range of applicability of cross-compositions. Our technique makes it possible to prove new no-polynomial-kernel results for a number of problems dealing with length-bounded cuts. Roughly speaking, our new technique combines the advantages of serial and parallel composition. In particular, answering an open question of Golovach and Thilikos [Golovach/Thilikos,2011], we show that, unless NP subseteq coNP/poly, the NP-hard Length-Bounded Edge-Cut problem (delete at most k edges such that the resulting graph has no s-t path of length shorter than l) parameterized by the combination of k and l has no polynomial-size problem kernel. Our framework applies to planar as well as directed variants of the basic problems and also applies to both edge and vertex deletion problems

    Lossy Kernelization

    Get PDF
    In this paper we propose a new framework for analyzing the performance of preprocessing algorithms. Our framework builds on the notion of kernelization from parameterized complexity. However, as opposed to the original notion of kernelization, our definitions combine well with approximation algorithms and heuristics. The key new definition is that of a polynomial size α\alpha-approximate kernel. Loosely speaking, a polynomial size α\alpha-approximate kernel is a polynomial time pre-processing algorithm that takes as input an instance (I,k)(I,k) to a parameterized problem, and outputs another instance (I,k)(I',k') to the same problem, such that I+kkO(1)|I'|+k' \leq k^{O(1)}. Additionally, for every c1c \geq 1, a cc-approximate solution ss' to the pre-processed instance (I,k)(I',k') can be turned in polynomial time into a (cα)(c \cdot \alpha)-approximate solution ss to the original instance (I,k)(I,k). Our main technical contribution are α\alpha-approximate kernels of polynomial size for three problems, namely Connected Vertex Cover, Disjoint Cycle Packing and Disjoint Factors. These problems are known not to admit any polynomial size kernels unless NPcoNP/polyNP \subseteq coNP/poly. Our approximate kernels simultaneously beat both the lower bounds on the (normal) kernel size, and the hardness of approximation lower bounds for all three problems. On the negative side we prove that Longest Path parameterized by the length of the path and Set Cover parameterized by the universe size do not admit even an α\alpha-approximate kernel of polynomial size, for any α1\alpha \geq 1, unless NPcoNP/polyNP \subseteq coNP/poly. In order to prove this lower bound we need to combine in a non-trivial way the techniques used for showing kernelization lower bounds with the methods for showing hardness of approximationComment: 58 pages. Version 2 contain new results: PSAKS for Cycle Packing and approximate kernel lower bounds for Set Cover and Hitting Set parameterized by universe siz

    Kernel Bounds for Structural Parameterizations of Pathwidth

    Full text link
    Assuming the AND-distillation conjecture, the Pathwidth problem of determining whether a given graph G has pathwidth at most k admits no polynomial kernelization with respect to k. The present work studies the existence of polynomial kernels for Pathwidth with respect to other, structural, parameters. Our main result is that, unless NP is in coNP/poly, Pathwidth admits no polynomial kernelization even when parameterized by the vertex deletion distance to a clique, by giving a cross-composition from Cutwidth. The cross-composition works also for Treewidth, improving over previous lower bounds by the present authors. For Pathwidth, our result rules out polynomial kernels with respect to the distance to various classes of polynomial-time solvable inputs, like interval or cluster graphs. This leads to the question whether there are nontrivial structural parameters for which Pathwidth does admit a polynomial kernelization. To answer this, we give a collection of graph reduction rules that are safe for Pathwidth. We analyze the success of these results and obtain polynomial kernelizations with respect to the following parameters: the size of a vertex cover of the graph, the vertex deletion distance to a graph where each connected component is a star, and the vertex deletion distance to a graph where each connected component has at most c vertices.Comment: This paper contains the proofs omitted from the extended abstract published in the proceedings of Algorithm Theory - SWAT 2012 - 13th Scandinavian Symposium and Workshops, Helsinki, Finland, July 4-6, 201

    Feedback Vertex Set Inspired Kernel for Chordal Vertex Deletion

    Full text link
    Given a graph GG and a parameter kk, the Chordal Vertex Deletion (CVD) problem asks whether there exists a subset UV(G)U\subseteq V(G) of size at most kk that hits all induced cycles of size at least 4. The existence of a polynomial kernel for CVD was a well-known open problem in the field of Parameterized Complexity. Recently, Jansen and Pilipczuk resolved this question affirmatively by designing a polynomial kernel for CVD of size O(k161log58k)O(k^{161}\log^{58}k), and asked whether one can design a kernel of size O(k10)O(k^{10}). While we do not completely resolve this question, we design a significantly smaller kernel of size O(k12log10k)O(k^{12}\log^{10}k), inspired by the O(k2)O(k^2)-size kernel for Feedback Vertex Set. Furthermore, we introduce the notion of the independence degree of a vertex, which is our main conceptual contribution
    corecore