9,218 research outputs found

    Adults are more efficient in creating and transmitting novel signalling systems than children

    Get PDF
    Iterated language learning experiments have shown that meaningful and structured signalling systems emerge when there is pressure for signals to be both learnable and expressive. Yet such experiments have mainly been conducted with adults using language-like signals. Here we explore whether structured signalling systems can also emerge when signalling domains are unfamiliar and when the learners are children with their well-attested cognitive and pragmatic limitations. In Experiment 1, we compared iterated learning of binary auditory sequences denoting small sets of meanings in chains of adults and 5-7-year old children. Signalling systems became more learnable even though iconicity and structure did not emerge despite applying a homonymy filter designed to keep the systems expressive. When the same types of signals were used in referential communication by adult and child dyads in Experiment 2, only the adults, but not the children, were able to negotiate shared iconic and structured signals. Referential communication using their native language by 4-5-year old children in Experiment 3 showed that only interaction with adults, but not with peers resulted in informative expressions. These findings suggest that emergence and transmission of communication systems is unlikely to be driven by children, and point to the importance of cognitive maturity and pragmatic expertise of learners as well as feedback-based scaffolding of communicative effectiveness by experts during language evolution

    Quantum automata, braid group and link polynomials

    Full text link
    The spin--network quantum simulator model, which essentially encodes the (quantum deformed) SU(2) Racah--Wigner tensor algebra, is particularly suitable to address problems arising in low dimensional topology and group theory. In this combinatorial framework we implement families of finite--states and discrete--time quantum automata capable of accepting the language generated by the braid group, and whose transition amplitudes are colored Jones polynomials. The automaton calculation of the polynomial of (the plat closure of) a link L on 2N strands at any fixed root of unity is shown to be bounded from above by a linear function of the number of crossings of the link, on the one hand, and polynomially bounded in terms of the braid index 2N, on the other. The growth rate of the time complexity function in terms of the integer k appearing in the root of unity q can be estimated to be (polynomially) bounded by resorting to the field theoretical background given by the Chern-Simons theory.Comment: Latex, 36 pages, 11 figure

    Communication as the Main Characteristic of Life

    Get PDF
    • …
    corecore