894 research outputs found

    On testing delay faults in macro-based combinational circuits

    Get PDF
    Abstract We consider the problem of testing for delay faults in macrobased circuits. Macro-based circuits are obtained as a result of technology mapping. Gate-level fault models cannot be used for such circuits, since the implementation of a macro may not have an accurate gate-level counterpart, or the macro implementation may not be known. Two delay fault models are proposed for macro-based circuits. The first model is analogous to the gatelevel gross delay fault model. The second model is analogous to the gate-level path delay fault model. We provide fault simulation procedures, and present experimental results

    Doctor of Philosophy

    Get PDF
    dissertationThe design of integrated circuit (IC) requires an exhaustive verification and a thorough test mechanism to ensure the functionality and robustness of the circuit. This dissertation employs the theory of relative timing that has the advantage of enabling designers to create designs that have significant power and performance over traditional clocked designs. Research has been carried out to enable the relative timing approach to be supported by commercial electronic design automation (EDA) tools. This allows asynchronous and sequential designs to be designed using commercial cad tools. However, two very significant holes in the flow exist: the lack of support for timing verification and manufacturing test. Relative timing (RT) utilizes circuit delay to enforce and measure event sequencing on circuit design. Asynchronous circuits can optimize power-performance product by adjusting the circuit timing. A thorough analysis on the timing characteristic of each and every timing path is required to ensure the robustness and correctness of RT designs. All timing paths have to conform to the circuit timing constraints. This dissertation addresses back-end design robustness by validating full cyclical path timing verification with static timing analysis and implementing design for testability (DFT). Circuit reliability and correctness are necessary aspects for the technology to become commercially ready. In this study, scan-chain, a commercial DFT implementation, is applied to burst-mode RT designs. In addition, a novel testing approach is developed along with scan-chain to over achieve 90% fault coverage on two fault models: stuck-at fault model and delay fault model. This work evaluates the cost of DFT and its coverage trade-off then determines the best implementation. Designs such as a 64-point fast Fourier transform (FFT) design, an I2C design, and a mixed-signal design are built to demonstrate power, area, performance advantages of the relative timing methodology and are used as a platform for developing the backend robustness. Results are verified by performing post-silicon timing validation and test. This work strengthens overall relative timed circuit flow, reliability, and testability

    Probabilistic analysis of defect tolerance in asynchronous nano crossbar architecture

    Get PDF
    Among recent advancements in technology, nanotechnology is particularly promising. Most researchers have begun to focus their efforts on developing nano scale circuits. Nano scale devices such as carbon nano tubes (CNT) and silicon nano wires (SiNW) form the primitive building blocks of many nano scale logic devices and recently developed computing architecture. One of the most promising nanotechnologies is crossbar-based architecture, a two-dimensional nanoarray, formed by the intersection of two orthogonal sets of parallel and uniformly-spaced CNTs or SiNWs. Nanowire crossbars offer the potential for ultra-high density, which has never been achieved by photolithography. In an effort to improve these circuits, our research group proposed a new Null Convention Logic (NCL) based clock-less crossbar architecture. By eliminating the clock, this architecture makes possible a still higher density in reconfigurable systems. Defect density, however, is directly proportional to the density of nanowires in the architecture. Future work, therefore, must improve the defect tolerance of these asynchronous structures. The thesis comprises two papers. The first introduces asynchronous crossbar architecture and concludes with the validation of mapping a 1-bit adder on it. It also discusses various advantages of asynchronous crossbar architecture over clock based nano structures. The second paper concentrates on the probabilistic analysis of asynchronous nano crossbar architecture to address the high defect rates in these structures. It analyzes the probability distribution of mapping functions over the structure for varying number of defects and proposes a method to increase the probability of successful mapping --Abstract, page iv

    ACT: A DFT tool for self-timed circuits

    Get PDF
    Journal ArticleThis paper presents a Design for Testability (DFT) tool called ACT (Asynchronous Circuit Testing) which uses a partial scan technique to make macro-module based selftimed circuits testable. The ACT tool is the first oFits kind for testing macro-module based self-timed circuits. ACT modifies designs automatically to incorporate partial scan and provides a complete path from schematic capturie to physical layout. It also has a test generation system to generate vectors for the testable design and to compute fault coverage of the generated tests. The test generatioin system includes a module for doing critical hazard free (.est generation using a new 6-valued algebra. ACT has been hilt around commercial tools from Viewlogic and Cascade. A Viewlogic schematic is used as the design entry point and Cascade tools are used for technology mapping

    Identifying worst case test vectors for FPGA exposed to total ionization dose using design for testability techniques

    Get PDF
    Electronic devices often operate in harsh environments which contain a variation of radiation sources. Radiation may cause different kinds of damage to proper operation of the devices. Their sources can be found in terrestrial environments, or in extra-terrestrial environments like in space, or in man-made radiation sources like nuclear reactors, biomedical devices and high energy particles physics experiments equipment. Depending on the operation environment of the device, the radiation resultant effect manifests in several forms like total ionizing dose effect (TID), or single event effects (SEEs) such as single event upset (SEU), single event gate rupture (SEGR), and single event latch up (SEL). TID effect causes an increase in the delay and the leakage current of CMOS circuits which may damage the proper operation of the integrated circuit. To ensure proper operation of these devices under radiation, thorough testing must be made especially in critical applications like space and military applications. Although the standard which describes the procedure for testing electronic devices under radiation emphasizes the use of worst case test vectors (WCTVs), they are never used in radiation testing due to the difficulty of generating these vectors for circuits under test. For decades, design for testability (DFT) has been the best choice for test engineers to test digital circuits in industry. It has become a very mature technology that can be relied on. DFT is usually used with automatic test patterns generation (ATPG) software to generate test vectors to test application specific integrated circuits (ASICs), especially with sequential circuits, against faults like stuck at faults and path delay faults. Surprisingly, however, radiation testing has not yet made use of this reliable technology. In this thesis, a novel methodology is proposed to extend the usage of DFT to generate WCTVs for delay failure in Flash based field programmable gate arrays (FPGAs) exposed to total ionizing dose (TID). The methodology is validated using MicroSemi ProASIC3 FPGA and cobalt 60 facility

    Built-In Self-Test (BIST) for Multi-Threshold NULL Convention Logic (MTNCL) Circuits

    Get PDF
    This dissertation proposes a Built-In Self-Test (BIST) hardware implementation for Multi-Threshold NULL Convention Logic (MTNCL) circuits. Two different methods are proposed: an area-optimized topology that requires minimal area overhead, and a test-performance-optimized topology that utilizes parallelism and internal hardware to reduce the overall test time through additional controllability points. Furthermore, an automated software flow is proposed to insert, simulate, and analyze an input MTNCL netlist to obtain a desired fault coverage, if possible, through iterative digital and fault simulations. The proposed automated flow is capable of producing both area-optimized and test-performance-optimized BIST circuits and scripts for digital and fault simulation using commercial software that may be utilized to manually verify or adjust further, if desired

    Advances in Nanowire-Based Computing Architectures

    Get PDF

    New Perspectives on Core In-field Path Delay Test

    Get PDF
    Path Delay fault test currently exploits DfT-based techniques, mainly relying on scan chains, widely supported by commercial tools. However, functional testing may be a desirable choice in this context because it allows to catch faults at-speed with no hardware overhead and it can be used both for endof-manufacturing tests and for in-field test. The purpose of this article is to compare the results that can be achieved with both approaches. This work is based on an open-source RISC-V-based processor core as benchmark device. Gathered results show that there is no correlation between stuck-at and path delay fault coverage, and provide guidelines for developing more effective functional test

    Functional testing of faults in asynchronous crossbar architecture

    Get PDF
    The challenge of extending Moore\u27s Law past the physical limits of the present semiconductor technology calls for novel innovations. Several novel nanotechnologies are being proposed as an alternative to their CMOS counterparts, with nanowire crossbar being one of the most promising paradigms. Quite recently, a new promising clock-free architecture, called the Asynchronous Crossbar Architecture has been proposed to enhance the manufacturability and to improve the robustness of digital circuits by removing various timing related failure modes. Even though the proposed clock-free architecture offers several merits, it is not free from the high defect rates induced due to nondeterministic nanoscale assembly. In this work, a unique Functional Test Algorithm (FTA) has been proposed and validated to test for manufacturing defects in this architecture. The proposed Functional Test Algorithm is aimed at reducing the testing overhead in terms of the time and space complexity associated with the existing sequential test scheme. In addition, it is designed to provide high fault coverage and excellent fault-tolerance via post-reconfiguration. This test scheme can be effectively used to assure true functionality of any threshold gate realized on a given PGMB. The main motivation behind this research is to propose a comprehensive test scheme which can achieve sufficiently high test coverage with acceptable test overhead. This test algorithm is a significant effort towards viable nanoscale computation --Abstract, page iv

    Critical hazard free test generation for asynchronous circuits

    Get PDF
    Journal ArticleWe describe a technique to generate critical hazard-free tests for self-timed control circuits build using a macromodule library, in a partial scan based DFT environment. We propose a 6 valued algebra to generate these tests which are guaranteed to be critical hazard free under an unbounded delay model. This algebra has been incorporated in a D-algorithm based automatic test pattern generator
    corecore