106 research outputs found

    Study of efficient transmission and reception of image-type data using millimeter waves

    Get PDF
    Evaluation of signal processing and modulation techniques for transmission and reception of image type data via millimeter wave relay satellite

    The Fifth NASA Symposium on VLSI Design

    Get PDF
    The fifth annual NASA Symposium on VLSI Design had 13 sessions including Radiation Effects, Architectures, Mixed Signal, Design Techniques, Fault Testing, Synthesis, Signal Processing, and other Featured Presentations. The symposium provides insights into developments in VLSI and digital systems which can be used to increase data systems performance. The presentations share insights into next generation advances that will serve as a basis for future VLSI design

    Robust Control of Wide Bandgap Power Electronics Device Enabled Smart Grid

    Get PDF
    abstract: In recent years, wide bandgap (WBG) devices enable power converters with higher power density and higher efficiency. On the other hand, smart grid technologies are getting mature due to new battery technology and computer technology. In the near future, the two technologies will form the next generation of smart grid enabled by WBG devices. This dissertation deals with two applications: silicon carbide (SiC) device used for medium voltage level interface (7.2 kV to 240 V) and gallium nitride (GaN) device used for low voltage level interface (240 V/120 V). A 20 kW solid state transformer (SST) is designed with 6 kHz switching frequency SiC rectifier. Then three robust control design methods are proposed for each of its smart grid operation modes. In grid connected mode, a new LCL filter design method is proposed considering grid voltage THD, grid current THD and current regulation loop robust stability with respect to the grid impedance change. In grid islanded mode, µ synthesis method combined with variable structure control is used to design a robust controller for grid voltage regulation. For grid emergency mode, multivariable controller designed using H infinity synthesis method is proposed for accurate power sharing. Controller-hardware-in-the-loop (CHIL) testbed considering 7-SST system is setup with Real Time Digital Simulator (RTDS). The real TMS320F28335 DSP and Spartan 6 FPGA control board is used to interface a switching model SST in RTDS. And the proposed control methods are tested. For low voltage level application, a 3.3 kW smart grid hardware is built with 3 GaN inverters. The inverters are designed with the GaN device characterized using the proposed multi-function double pulse tester. The inverter is controlled by onboard TMS320F28379D dual core DSP with 200 kHz sampling frequency. Each inverter is tested to process 2.2 kW power with overall efficiency of 96.5 % at room temperature. The smart grid monitor system and fault interrupt devices (FID) based on Arduino Mega2560 are built and tested. The smart grid cooperates with GaN inverters through CAN bus communication. At last, the three GaN inverters smart grid achieved the function of grid connected to islanded mode smooth transitionDissertation/ThesisDoctoral Dissertation Electrical Engineering 201

    Circuit techniques for low-voltage and high-speed A/D converters

    Get PDF
    The increasing digitalization in all spheres of electronics applications, from telecommunications systems to consumer electronics appliances, requires analog-to-digital converters (ADCs) with a higher sampling rate, higher resolution, and lower power consumption. The evolution of integrated circuit technologies partially helps in meeting these requirements by providing faster devices and allowing for the realization of more complex functions in a given silicon area, but simultaneously it brings new challenges, the most important of which is the decreasing supply voltage. Based on the switched capacitor (SC) technique, the pipelined architecture has most successfully exploited the features of CMOS technology in realizing high-speed high-resolution ADCs. An analysis of the effects of the supply voltage and technology scaling on SC circuits is carried out, and it shows that benefits can be expected at least for the next few technology generations. The operational amplifier is a central building block in SC circuits, and thus a comparison of the topologies and their low voltage capabilities is presented. It is well-known that the SC technique in its standard form is not suitable for very low supply voltages, mainly because of insufficient switch control voltage. Two low-voltage modifications are investigated: switch bootstrapping and the switched opamp (SO) technique. Improved circuit structures are proposed for both. Two ADC prototypes using the SO technique are presented, while bootstrapped switches are utilized in three other prototypes. An integral part of an ADC is the front-end sample-and-hold (S/H) circuit. At high signal frequencies its linearity is predominantly determined by the switches utilized. A review of S/H architectures is presented, and switch linearization by means of bootstrapping is studied and applied to two of the prototypes. Another important parameter is sampling clock jitter, which is analyzed and then minimized with carefully-designed clock generation and buffering. The throughput of ADCs can be increased by using parallelism. This is demonstrated on the circuit level with the double-sampling technique, which is applied to S/H circuits and a pipelined ADC. An analysis of nonidealities in double-sampling is presented. At the system level parallelism is utilized in a time-interleaved ADC. The mismatch of parallel signal paths produces errors, for the elimination of which a timing skew insensitive sampling circuit and a digital offset calibration are developed. A total of seven prototypes are presented: two double-sampled S/H circuits, a time-interleaved ADC, an IF-sampling self-calibrated pipelined ADC, a current steering DAC with a deglitcher, and two pipelined ADCs employing the SO technique.reviewe

    Space programs summary no. 37-32, volume iv, for the period 1 february - 31 march 1965. supporting research and advanced development

    Get PDF
    Space programs on telecommunications, space science, propulsion, engineer mechanics, guidance and control, systems, and project engineerin

    Advanced scanners and imaging systems for earth observations

    Get PDF
    Assessments of present and future sensors and sensor related technology are reported along with a description of user needs and applications. Five areas are outlined: (1) electromechanical scanners, (2) self-scanned solid state sensors, (3) electron beam imagers, (4) sensor related technology, and (5) user applications. Recommendations, charts, system designs, technical approaches, and bibliographies are included for each area

    Resilient Cooperative Control of Networked Multi-Agent Systems

    Get PDF

    Space Communications: Theory and Applications. Volume 3: Information Processing and Advanced Techniques. A Bibliography, 1958 - 1963

    Get PDF
    Annotated bibliography on information processing and advanced communication techniques - theory and applications of space communication

    A feasibility study of an experiment for determining the properties of the Mars atmosphere. Volume I - Summary

    Get PDF
    Mars probe design and subsystem performance characteristics for investigating Martian atmospher

    Pipeline analog-to-digital converters for wide-band wireless communications

    Get PDF
    During the last decade, the development of the analog electronics has been dictated by the enormous growth of the wireless communications. Typical for the new communication standards has been an evolution towards higher data rates, which allows more services to be provided. Simultaneously, the boundary between analog and digital signal processing is moving closer to the antenna, thus aiming for a software defined radio. For analog-to-digital converters (ADCs) of radio receivers this indicates higher sample rate, wider bandwidth, higher resolution, and lower power dissipation. The radio receiver architectures, showing the greatest potential to meet the commercial trends, include the direct conversion receiver and the super heterodyne receiver with an ADC sampling at the intermediate frequency (IF). The pipelined ADC architecture, based on the switched capacitor (SC) technique, has most successfully covered the widely separated resolution and sample rate requirements of these receiver architectures. In this thesis, the requirements of ADCs in both of these receiver architectures are studied using the system specifications of the 3G WCDMA standard. From the standard and from the limited performance of the circuit building blocks, design constraints for pipeline ADCs, at the architectural and circuit level, are drawn. At the circuit level, novel topologies for all the essential blocks of the pipeline ADC have been developed. These include a dual-mode operational amplifier, low-power voltage reference circuits with buffering, and a floating-bulk bootstrapped switch for highly-linear IF-sampling. The emphasis has been on dynamic comparators: a new mismatch insensitive topology is proposed and measurement results for three different topologies are presented. At the architectural level, the optimization of the ADCs in the single-chip direct conversion receivers is discussed: the need for small area, low power, suppression of substrate noise, input and output interfaces, etc. Adaptation of the resolution and sample rate of a pipeline ADC, to be used in more flexible multi-mode receivers, is also an important topic included. A 6-bit 15.36-MS/s embedded CMOS pipeline ADC and an 8-bit 1/15.36-MS/s dual-mode CMOS pipeline ADC, optimized for low-power single-chip direct conversion receivers with single-channel reception, have been designed. The bandwidth of a pipeline ADC can be extended by employing parallelism to allow multi-channel reception. The errors resulted from mismatch of parallel signal paths are analyzed and their elimination is presented. Particularly, an optimal partitioning of the resolution between the stages, and the number of parallel channels, in time-interleaved ADCs are derived. A low-power 10-bit 200-MS/s CMOS parallel pipeline ADC employing double sampling and a front-end sample-and-hold (S/H) circuit is implemented. Emphasis of the thesis is on high-resolution pipeline ADCs with IF-sampling capability. The resolution is extended beyond the limits set by device matching by using calibration, while time interleaving is applied to widen the signal bandwidth. A review of calibration and error averaging techniques is presented. A simple digital self-calibration technique to compensate capacitor mismatch within a single-channel pipeline ADC, and the gain and offset mismatch between the channels of a time-interleaved ADC, is developed. The new calibration method is validated with two high-resolution BiCMOS prototypes, a 13-bit 50-MS/s single-channel and a 14-bit 160-MS/s parallel pipeline ADC, both utilizing a highly linear front-end allowing sampling from 200-MHz IF-band.reviewe
    • …
    corecore