241 research outputs found

    Wireless MIMO Switching: Weighted Sum Mean Square Error and Sum Rate Optimization

    Full text link
    This paper addresses joint transceiver and relay design for a wireless multiple-input-multiple-output (MIMO) switching scheme that enables data exchange among multiple users. Here, a multi-antenna relay linearly precodes the received (uplink) signals from multiple users before forwarding the signal in the downlink, where the purpose of precoding is to let each user receive its desired signal with interference from other users suppressed. The problem of optimizing the precoder based on various design criteria is typically non-convex and difficult to solve. The main contribution of this paper is a unified approach to solve the weighted sum mean square error (MSE) minimization and weighted sum rate maximization problems in MIMO switching. Specifically, an iterative algorithm is proposed for jointly optimizing the relay's precoder and the users' receive filters to minimize the weighted sum MSE. It is also shown that the weighted sum rate maximization problem can be reformulated as an iterated weighted sum MSE minimization problem and can therefore be solved similarly to the case of weighted sum MSE minimization. With properly chosen initial values, the proposed iterative algorithms are asymptotically optimal in both high and low signal-to-noise ratio (SNR) regimes for MIMO switching, either with or without self-interference cancellation (a.k.a., physical-layer network coding). Numerical results show that the optimized MIMO switching scheme based on the proposed algorithms significantly outperforms existing approaches in the literature.Comment: This manuscript is under 2nd review of IEEE Transactions on Information Theor

    User-Antenna Selection for Physical-Layer Network Coding based on Euclidean Distance

    Full text link
    In this paper, we present the error performance analysis of a multiple-input multiple-output (MIMO) physical-layer network coding (PNC) system with two different user-antenna selection (AS) schemes in asymmetric channel conditions. For the first antenna selection scheme (AS1), where the user-antenna is selected in order to maximize the overall channel gain between the user and the relay, we give an explicit analytical proof that for binary modulations, the system achieves full diversity order of min(NA,NB)×NRmin(N_A , N_B ) \times N_R in the multiple-access (MA) phase, where NAN_A, NBN_B and NRN_R denote the number of antennas at user AA, user BB and relay RR respectively. We present a detailed investigation of the diversity order for the MIMO-PNC system with AS1 in the MA phase for any modulation order. A tight closed-form upper bound on the average SER is also derived for the special case when NR=1N_R = 1, which is valid for any modulation order. We show that in this case the system fails to achieve transmit diversity in the MA phase, as the system diversity order drops to 11 irrespective of the number of transmit antennas at the user nodes. Additionally, we propose a Euclidean distance (ED) based user-antenna selection scheme (AS2) which outperforms the first scheme in terms of error performance. Moreover, by deriving upper and lower bounds on the diversity order for the MIMO-PNC system with AS2, we show that this system enjoys both transmit and receive diversity, achieving full diversity order of min(NA,NB)×NR\min(N_A, N_B) \times N_R in the MA phase for any modulation order. Monte Carlo simulations are provided which confirm the correctness of the derived analytical results.Comment: IEEE Transactions on Communications. arXiv admin note: text overlap with arXiv:1709.0445

    Achieving full diversity in multi-antenna two-way relay networks via symbol-based physical-layer network coding

    No full text
    This paper considers physical-layer network coding (PNC) with M-ary phase-shift keying (MPSK) modulation in two-way relay channel (TWRC). A low complexity detection technique, termed symbol-based PNC (SPNC), is proposed for the relay. In particular, attributing to the outer product operation imposed on the superposed MPSK signals at the relay, SPNC obtains the network-coded symbol (NCS) straightforwardly without having to detect individual symbols separately. Unlike the optimal multi-user detector (MUD) which searches over the combinations of all users’ modulation constellations, SPNC searches over only one modulation constellation, thus simplifies the NCS detection. Despite the reduced complexity, SPNC achieves full diversity in multi-antenna relay as the optimal MUD does. Specifically, antenna selection based SPNC (AS-SPNC) scheme and signal combining based SPNC (SC-SPNC) scheme are proposed. Our analysis of these two schemes not only confirms their full diversity performance, but also implies when SPNC is applied in multi-antenna relay, TWRC can be viewed as an effective single-input multiple-output (SIMO) system, in which AS-PNC and SC-PNC are equivalent to the general AS scheme and the maximal-ratio combining (MRC) scheme. Moreover, an asymptotic analysis of symbol error rate (SER) is provided for SC-PNC considering the case that the number of relay antennas is sufficiently large

    Cloud Compute-and-Forward with Relay Cooperation

    Full text link
    We study a cloud network with M distributed receiving antennas and L users, which transmit their messages towards a centralized decoder (CD), where M>=L. We consider that the cloud network applies the Compute-and-Forward (C&F) protocol, where L antennas/relays are selected to decode integer equations of the transmitted messages. In this work, we focus on the best relay selection and the optimization of the Physical-Layer Network Coding (PNC) at the relays, aiming at the throughput maximization of the network. Existing literature optimizes PNC with respect to the maximization of the minimum rate among users. The proposed strategy maximizes the sum rate of the users allowing nonsymmetric rates, while the optimal solution is explored with the aid of the Pareto frontier. The problem of relay selection is matched to a coalition formation game, where the relays and the CD cooperate in order to maximize their profit. Efficient coalition formation algorithms are proposed, which perform joint relay selection and PNC optimization. Simulation results show that a considerable improvement is achieved compared to existing results, both in terms of the network sum rate and the players' profits.Comment: Submitted to IEEE Transactions on Wireless Communication

    MIMO Multiway Relaying with Clustered Full Data Exchange: Signal Space Alignment and Degrees of Freedom

    Full text link
    We investigate achievable degrees of freedom (DoF) for a multiple-input multiple-output (MIMO) multiway relay channel (mRC) with LL clusters and KK users per cluster. Each user is equipped with MM antennas and the relay with NN antennas. We assume a new data exchange model, termed \emph{clustered full data exchange}, i.e., each user in a cluster wants to learn the messages of all the other users in the same cluster. Novel signal alignment techniques are developed to systematically construct the beamforming matrices at the users and the relay for efficient physical-layer network coding. Based on that, we derive an achievable DoF of the MIMO mRC with an arbitrary network configuration of LL and KK, as well as with an arbitrary antenna configuration of MM and NN. We show that our proposed scheme achieves the DoF capacity when MN1LK1\frac{M}{N} \leq \frac{1}{LK-1} and MN(K1)L+1KL\frac{M}{N} \geq \frac{(K-1)L+1}{KL}.Comment: 13 pages, 4 figure

    MIMO Multiway Relaying with Pairwise Data Exchange: A Degrees of Freedom Perspective

    Full text link
    In this paper, we study achievable degrees of freedom (DoF) of a multiple-input multiple-output (MIMO) multiway relay channel (mRC) where KK users, each equipped with MM antennas, exchange messages in a pairwise manner via a common NN-antenna relay node. % A novel and systematic way of joint beamforming design at the users and at the relay is proposed to align signals for efficient implementation of physical-layer network coding (PNC). It is shown that, when the user number K=3K=3, the proposed beamforming design can achieve the DoF capacity of the considered mRC for any (M,N)(M,N) setups. % For the scenarios with K>3K>3, we show that the proposed signaling scheme can be improved by disabling a portion of relay antennas so as to align signals more efficiently. Our analysis reveals that the obtained achievable DoF is always piecewise linear, and is bounded either by the number of user antennas MM or by the number of relay antennas NN. Further, we show that the DoF capacity can be achieved for MN(0,K1K(K2)]\frac{M}{N} \in \left(0,\frac{K-1}{K(K-2)} \right] and MN[1K(K1)+12,)\frac{M}{N} \in \left[\frac{1}{K(K-1)}+\frac{1}{2},\infty \right), which provides a broader range of the DoF capacity than the existing results. Asymptotic DoF as KK\rightarrow \infty is also derived based on the proposed signaling scheme.Comment: 13 pages, 7 figure
    corecore