1,718 research outputs found

    Proper Hamiltonian Cycles in Edge-Colored Multigraphs

    Get PDF
    A cc-edge-colored multigraph has each edge colored with one of the cc available colors and no two parallel edges have the same color. A proper Hamiltonian cycle is a cycle containing all the vertices of the multigraph such that no two adjacent edges have the same color. In this work we establish sufficient conditions for a multigraph to have a proper Hamiltonian cycle, depending on several parameters such as the number of edges and the rainbow degree.Comment: 13 page

    Bounded colorings of multipartite graphs and hypergraphs

    Full text link
    Let cc be an edge-coloring of the complete nn-vertex graph KnK_n. The problem of finding properly colored and rainbow Hamilton cycles in cc was initiated in 1976 by Bollob\'as and Erd\H os and has been extensively studied since then. Recently it was extended to the hypergraph setting by Dudek, Frieze and Ruci\'nski. We generalize these results, giving sufficient local (resp. global) restrictions on the colorings which guarantee a properly colored (resp. rainbow) copy of a given hypergraph GG. We also study multipartite analogues of these questions. We give (up to a constant factor) optimal sufficient conditions for a coloring cc of the complete balanced mm-partite graph to contain a properly colored or rainbow copy of a given graph GG with maximum degree Δ\Delta. Our bounds exhibit a surprising transition in the rate of growth, showing that the problem is fundamentally different in the regimes Δm\Delta \gg m and Δm\Delta \ll m Our main tool is the framework of Lu and Sz\'ekely for the space of random bijections, which we extend to product spaces
    corecore