184 research outputs found

    On Mod (2s+1)(2s+1)-Orientations of Graphs

    Get PDF

    Generalized bent Boolean functions and strongly regular Cayley graphs

    Get PDF
    In this paper we define the (edge-weighted) Cayley graph associated to a generalized Boolean function, introduce a notion of strong regularity and give several of its properties. We show some connections between this concept and generalized bent functions (gbent), that is, functions with flat Walsh-Hadamard spectrum. In particular, we find a complete characterization of quartic gbent functions in terms of the strong regularity of their associated Cayley graph.Comment: 13 pages, 2 figure

    Partitioning Perfect Graphs into Stars

    Full text link
    The partition of graphs into "nice" subgraphs is a central algorithmic problem with strong ties to matching theory. We study the partitioning of undirected graphs into same-size stars, a problem known to be NP-complete even for the case of stars on three vertices. We perform a thorough computational complexity study of the problem on subclasses of perfect graphs and identify several polynomial-time solvable cases, for example, on interval graphs and bipartite permutation graphs, and also NP-complete cases, for example, on grid graphs and chordal graphs.Comment: Manuscript accepted to Journal of Graph Theor

    The Spectrum of an Adelic Markov Operator

    Full text link
    With the help of the representation of SL(2,Z) on the rank two free module over the integer adeles, we define the transition operator of a Markov chain. The real component of its spectrum exhibits a gap, whereas the non-real component forms a circle of radius 1/\sqrt{2}.Comment: 38 pages, 5 figure

    Sum of squares lower bounds for refuting any CSP

    Full text link
    Let P:{0,1}k→{0,1}P:\{0,1\}^k \to \{0,1\} be a nontrivial kk-ary predicate. Consider a random instance of the constraint satisfaction problem CSP(P)\mathrm{CSP}(P) on nn variables with Δn\Delta n constraints, each being PP applied to kk randomly chosen literals. Provided the constraint density satisfies Δ≫1\Delta \gg 1, such an instance is unsatisfiable with high probability. The \emph{refutation} problem is to efficiently find a proof of unsatisfiability. We show that whenever the predicate PP supports a tt-\emph{wise uniform} probability distribution on its satisfying assignments, the sum of squares (SOS) algorithm of degree d=Θ(nΔ2/(t−1)log⁡Δ)d = \Theta(\frac{n}{\Delta^{2/(t-1)} \log \Delta}) (which runs in time nO(d)n^{O(d)}) \emph{cannot} refute a random instance of CSP(P)\mathrm{CSP}(P). In particular, the polynomial-time SOS algorithm requires Ω~(n(t+1)/2)\widetilde{\Omega}(n^{(t+1)/2}) constraints to refute random instances of CSP(P)(P) when PP supports a tt-wise uniform distribution on its satisfying assignments. Together with recent work of Lee et al. [LRS15], our result also implies that \emph{any} polynomial-size semidefinite programming relaxation for refutation requires at least Ω~(n(t+1)/2)\widetilde{\Omega}(n^{(t+1)/2}) constraints. Our results (which also extend with no change to CSPs over larger alphabets) subsume all previously known lower bounds for semialgebraic refutation of random CSPs. For every constraint predicate~PP, they give a three-way hardness tradeoff between the density of constraints, the SOS degree (hence running time), and the strength of the refutation. By recent algorithmic results of Allen et al. [AOW15] and Raghavendra et al. [RRS16], this full three-way tradeoff is \emph{tight}, up to lower-order factors.Comment: 39 pages, 1 figur
    • 

    corecore