156 research outputs found

    Dynamic Network State Learning Model for Mobility Based WMSN Routing Protocol

    Get PDF
    The rising demand of wireless multimedia sensor networks (WMSNs) has motivated academia-industries to develop energy efficient, Quality of Service (QoS) and delay sensitive communication systems to meet major real-world demands like multimedia broadcast, security and surveillance systems, intelligent transport system, etc. Typically, energy efficiency, QoS and delay sensitive transmission are the inevitable requirements of WMSNs. Majority of the existing approaches either use physical layer or system level schemes that individually can’t assure optimal transmission decision to meet the demand. The cumulative efficiency of physical layer power control, adaptive modulation and coding and system level dynamic power management (DPM) are found significant to achieve these demands. With this motivation, in this paper a unified model is derived using enhanced reinforcement learning and stochastic optimization method. Exploiting physical as well as system level network state information, our proposed dynamic network state learning model (NSLM) applies stochastic optimization to learn network state-activity that derives an optimal DPM policy and PHY switching scheduling. NSLM applies known as well as unknown network state variables to derive transmission and PHY switching policy, where it considers DPM as constrained Markov decision process (MDP) problem. Here,the use of Hidden Markov Model and Lagrangian relaxation has made NSLM convergence swift that assures delay-sensitive, QoS enriched, and bandwidth and energy efficient transmission for WMSN under uncertain network conditions. Our proposed NSLM DPM model has outperformed traditional Q-Learning based DPM in terms of buffer cost, holding cost, overflow, energy consumption and bandwidth utilization

    Optimization of Coding of AR Sources for Transmission Across Channels with Loss

    Get PDF

    CASPR: Judiciously Using the Cloud for Wide-Area Packet Recovery

    Full text link
    We revisit a classic networking problem -- how to recover from lost packets in the best-effort Internet. We propose CASPR, a system that judiciously leverages the cloud to recover from lost or delayed packets. CASPR supplements and protects best-effort connections by sending a small number of coded packets along the highly reliable but expensive cloud paths. When receivers detect packet loss, they recover packets with the help of the nearby data center, not the sender, thus providing quick and reliable packet recovery for latency-sensitive applications. Using a prototype implementation and its deployment on the public cloud and the PlanetLab testbed, we quantify the benefits of CASPR in providing fast, cost effective packet recovery. Using controlled experiments, we also explore how these benefits translate into improvements up and down the network stack

    A proxy for reliable 5G (and beyond) mmWave communications. Contributions to multi-path scheduling for a reliability focused mmWave proxy

    Get PDF
    Reliable, consistent and very high data rate mobile communication will become especially important for future services such as, among other things, future emergency communication needs. MmWave technology provides the needed capacity, however, lacks the reliability due to the abrupt capacity changes any one path experiences. Intelligently making use of varying numbers of available mmWave paths, efficiently scheduling data across the paths, perhaps even through multi-operator agreements; and balancing mobile power consumption with path costs and the need for reliable consistent quality will be critical to attaining this aim. In this thesis, the multipath scheduling problem in a mmWave proxy when the paths have dynamically changing path characteristics is considered. To address this problem, a hybrid scheduler is proposed, the performance of which is compared with the Round Robin scheduler, Random scheduler and the Highest Capacity First scheduler. Forward error correction is explored as a means of enhancing the scheduling. Keywords:Multipath Scheduling, mmWave Proxy, Forward Error Correction, beyond 5G

    Implementing Efficient and Multi-Hop Image Acquisition In Remote Monitoring IoT systems using LoRa Technology

    Get PDF
    Remote sensing or monitoring through the deployment of wireless sensor networks (WSNs) is considered an economical and convenient manner in which to collect information without cumbersome human intervention. Unfortunately, due to challenging deployment conditions, such as large geographic area, and lack of electricity and network infrastructure, designing such wireless sensor networks for large-scale farms or forests is difficult and expensive. Many WSN-appropriate wireless technologies, such as Wi-Fi, Bluetooth, Zigbee and 6LoWPAN, have been widely adopted in remote sensing. The performance of these technologies, however, is not sufficient for use across large areas. Generally, as the geographical scope expands, more devices need to be employed to expand network coverage, so the number and cost of devices in wireless sensor networks will increase dramatically. Besides, this type of deployment usually not only has a high probability of failure and high transmission costs, but also imposes additional overhead on system management and maintenance. LoRa is an emerging physical layer standard for long range wireless communication. By utilizing chirp spread spectrum modulation, LoRa features a long communication range and broad signal coverage. At the same time, LoRa also has low power consumption. Thus, LoRa outperforms similar technologies in terms of hardware cost, power consumption and radio coverage. It is also considered to be one of the promising solutions for the future of the Internet of Things (IoT). As the research and development of LoRa are still in its early stages, it lacks sufficient support for multi-packet transport and complex deployment topologies. Therefore, LoRa is not able to further expand its network coverage and efficiently support big data transfers like other conventional technologies. Besides, due to the smaller payload and data rate in LoRa physical design, it is more challenging to implement these features in LoRa. These shortcomings limit the potential for LoRa to be used in more productive application scenarios. This thesis addresses the problem of multi-packet and multi-hop transmission using LoRa by proposing two novel protocols, namely Multi-Packet LoRa (MPLR) and Multi-Hop LoRa (MHLR). LoRa's ability to transmit large messages is first evaluated in this thesis, and then the protocols are well designed and implemented to enrich LoRa's possibilities in image transmission applications and multi-hop topologies. MPLR introduces a reliable transport mechanism for multi-packet sensory data, making its network not limited to the transmission of small sensor data only. In collaboration with a data channel reservation technique, MPLR is able to greatly mitigate data collisions caused by the increased transmission time in laboratory experiments. MHLR realizes efficient routing in LoRa multi-hop transmission by utilizing the power of machine learning. The results of both indoor and outdoor experiments show that the machine learning based routing is effective in wireless sensor networks
    • …
    corecore