1,428 research outputs found

    SECURE AND LIGHTWEIGHT HARDWARE AUTHENTICATION USING ISOLATED PHYSICAL UNCLONABLE FUNCTION

    Get PDF
    As embedded computers become ubiquitous, mobile and more integrated in connectivity, user dependence on integrated circuits (ICs) increases massively for handling security sensitive tasks as well as processing sensitive information. During this process, hardware authentication is important to prevent unauthorized users or devices from gaining access to secret information. An effective method for hardware authentication is by using physical unclonable function (PUF), which is a hardware design that leverages intrinsic unique physical characteristics of an IC, such as propagation delay, for security authentication in real time. However, PUF is vulnerable to modeling attacks, as one can design an algorithm to imitate PUF functionality at the software level given a sufficient set of challenge-response pairs (CRPs). To address the problem, we employ hardware isolation primitives (e.g., ARM TrustZone) to protect PUF. The key idea is to physically isolate the system resources that handle security-sensitive information from the regular ones. This technique can be implemented by isolating and strictly controlling any connection between the secure and normal resources. We design and implement a ring oscillator (RO)-based PUF with hardware isolation protection using ARM TrustZone. Our PUF design heavily limits the number of CRPs a potential attacker has access to. Therefore, the modeling attack cannot be performed accurately enough to guess the response of the PUF to a challenge. Furthermore, we develop and demonstrate a brand new application for the designed PUF, namely multimedia authentication, which is an integral part of multimedia signal processing in many real-time and security sensitive applications. We show that the PUF-based hardware security approach is capable of accomplishing the authentication for both the hardware device and the multimedia stream while introducing minimum overhead. Finally, we evaluate the hardware-isolated PUF design using a prototype implementation on a Xilinx system on chip (SoC). Particularly, we conduct functional evaluation (i.e., randomness, uniqueness, and correctness), security analysis against modeling attacks, as well as performance and overhead evaluation (i.e., response time and resource usages). Our experimental results on the real hardware demonstrate the high security and low overhead of the PUF in real time authentication. Advisor: Sheng We

    SECURE AND LIGHTWEIGHT HARDWARE AUTHENTICATION USING ISOLATED PHYSICAL UNCLONABLE FUNCTION

    Get PDF
    As embedded computers become ubiquitous, mobile and more integrated in connectivity, user dependence on integrated circuits (ICs) increases massively for handling security sensitive tasks as well as processing sensitive information. During this process, hardware authentication is important to prevent unauthorized users or devices from gaining access to secret information. An effective method for hardware authentication is by using physical unclonable function (PUF), which is a hardware design that leverages intrinsic unique physical characteristics of an IC, such as propagation delay, for security authentication in real time. However, PUF is vulnerable to modeling attacks, as one can design an algorithm to imitate PUF functionality at the software level given a sufficient set of challenge-response pairs (CRPs). To address the problem, we employ hardware isolation primitives (e.g., ARM TrustZone) to protect PUF. The key idea is to physically isolate the system resources that handle security-sensitive information from the regular ones. This technique can be implemented by isolating and strictly controlling any connection between the secure and normal resources. We design and implement a ring oscillator (RO)-based PUF with hardware isolation protection using ARM TrustZone. Our PUF design heavily limits the number of CRPs a potential attacker has access to. Therefore, the modeling attack cannot be performed accurately enough to guess the response of the PUF to a challenge. Furthermore, we develop and demonstrate a brand new application for the designed PUF, namely multimedia authentication, which is an integral part of multimedia signal processing in many real-time and security sensitive applications. We show that the PUF-based hardware security approach is capable of accomplishing the authentication for both the hardware device and the multimedia stream while introducing minimum overhead. Finally, we evaluate the hardware-isolated PUF design using a prototype implementation on a Xilinx system on chip (SoC). Particularly, we conduct functional evaluation (i.e., randomness, uniqueness, and correctness), security analysis against modeling attacks, as well as performance and overhead evaluation (i.e., response time and resource usages). Our experimental results on the real hardware demonstrate the high security and low overhead of the PUF in real time authentication. Advisor: Sheng We

    Design and analysis of a control system for an optical delay-line circuit used as reconfigurable gain equalizer

    Get PDF
    The design and analysis of a control system for a coherent two-port lattice-form optical delay-line circuit used as reconfigurable gain equalizer is presented. The design of the control system, which is based on a real device model and a least-square optimization method, is described in detail. Analysis on a five-stage device for the 32 possible solutions of phase parameters showed that, for some filter characteristics, the variations in power dissipation can vary up to a factor of 2. Furthermore, the solution selection has influence on the optimization result and number of iterations needed. A sensitivity analysis of the phase parameters showed that the allowable error in the phase parameters should not exceed a standard deviation of /spl pi//500 in order to achieve a total maximal absolute accuracy error not greater than approximately 0.6 dB. A five-stage device has been fabricated using planar lightwave circuit technology that uses the thermooptic effect. Excellent agreement between simulations and measurements has been achieved

    ATM virtual connection performance modeling

    Get PDF

    All-optical Reservoir Computing

    Full text link
    Reservoir Computing is a novel computing paradigm which uses a nonlinear recurrent dynamical system to carry out information processing. Recent electronic and optoelectronic Reservoir Computers based on an architecture with a single nonlinear node and a delay loop have shown performance on standardized tasks comparable to state-of-the-art digital implementations. Here we report an all-optical implementation of a Reservoir Computer, made of off-the-shelf components for optical telecommunications. It uses the saturation of a semiconductor optical amplifier as nonlinearity. The present work shows that, within the Reservoir Computing paradigm, all-optical computing with state-of-the-art performance is possible

    Teletraffic analysis of ATM systems : symposium gehouden aan de Technische Universiteit Eindhoven op 15 februari 1993

    Get PDF

    Speeding-up model-based fault injection of deep-submicron CMOS fault models through dynamic and partially reconfigurable FPGAS

    Full text link
    Actualmente, las tecnologías CMOS submicrónicas son básicas para el desarrollo de los modernos sistemas basados en computadores, cuyo uso simplifica enormemente nuestra vida diaria en una gran variedad de entornos, como el gobierno, comercio y banca electrónicos, y el transporte terrestre y aeroespacial. La continua reducción del tamaño de los transistores ha permitido reducir su consumo y aumentar su frecuencia de funcionamiento, obteniendo por ello un mayor rendimiento global. Sin embargo, estas mismas características que mejoran el rendimiento del sistema, afectan negativamente a su confiabilidad. El uso de transistores de tamaño reducido, bajo consumo y alta velocidad, está incrementando la diversidad de fallos que pueden afectar al sistema y su probabilidad de aparición. Por lo tanto, existe un gran interés en desarrollar nuevas y eficientes técnicas para evaluar la confiabilidad, en presencia de fallos, de sistemas fabricados mediante tecnologías submicrónicas. Este problema puede abordarse por medio de la introducción deliberada de fallos en el sistema, técnica conocida como inyección de fallos. En este contexto, la inyección basada en modelos resulta muy interesante, ya que permite evaluar la confiabilidad del sistema en las primeras etapas de su ciclo de desarrollo, reduciendo por tanto el coste asociado a la corrección de errores. Sin embargo, el tiempo de simulación de modelos grandes y complejos imposibilita su aplicación en un gran número de ocasiones. Esta tesis se centra en el uso de dispositivos lógicos programables de tipo FPGA (Field-Programmable Gate Arrays) para acelerar los experimentos de inyección de fallos basados en simulación por medio de su implementación en hardware reconfigurable. Para ello, se extiende la investigación existente en inyección de fallos basada en FPGA en dos direcciones distintas: i) se realiza un estudio de las tecnologías submicrónicas existentes para obtener un conjunto representativo de modelos de fallos transitoriosAndrés Martínez, DD. (2007). Speeding-up model-based fault injection of deep-submicron CMOS fault models through dynamic and partially reconfigurable FPGAS [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/1943Palanci
    corecore