9,112 research outputs found

    Stabilization of Stochastic Quantum Dynamics via Open and Closed Loop Control

    Full text link
    In this paper we investigate parametrization-free solutions of the problem of quantum pure state preparation and subspace stabilization by means of Hamiltonian control, continuous measurement and quantum feedback, in the presence of a Markovian environment. In particular, we show that whenever suitable dissipative effects are induced either by the unmonitored environment or by non Hermitian measurements, there is no need for feedback control to accomplish the task. Constructive necessary and sufficient conditions on the form of the open-loop controller can be provided in this case. When open-loop control is not sufficient, filtering-based feedback control laws steering the evolution towards a target pure state are provided, which generalize those available in the literature

    Stabilization of systems with asynchronous sensors and controllers

    Full text link
    We study the stabilization of networked control systems with asynchronous sensors and controllers. Offsets between the sensor and controller clocks are unknown and modeled as parametric uncertainty. First we consider multi-input linear systems and provide a sufficient condition for the existence of linear time-invariant controllers that are capable of stabilizing the closed-loop system for every clock offset in a given range of admissible values. For first-order systems, we next obtain the maximum length of the offset range for which the system can be stabilized by a single controller. Finally, this bound is compared with the offset bounds that would be allowed if we restricted our attention to static output feedback controllers.Comment: 32 pages, 6 figures. This paper was partially presented at the 2015 American Control Conference, July 1-3, 2015, the US

    Switching Quantum Dynamics for Fast Stabilization

    Get PDF
    Control strategies for dissipative preparation of target quantum states, both pure and mixed, and subspaces are obtained by switching between a set of available semigroup generators. We show that the class of problems of interest can be recast, from a control--theoretic perspective, into a switched-stabilization problem for linear dynamics. This is attained by a suitable affine transformation of the coherence-vector representation. In particular, we propose and compare stabilizing time-based and state-based switching rules for entangled state preparation, showing that the latter not only ensure faster convergence with respect to non-switching methods, but can designed so that they retain robustness with respect to initialization, as long as the target is a pure state or a subspace.Comment: 15 pages, 4 figure

    On feedback stabilization of linear switched systems via switching signal control

    Full text link
    Motivated by recent applications in control theory, we study the feedback stabilizability of switched systems, where one is allowed to chose the switching signal as a function of x(t)x(t) in order to stabilize the system. We propose new algorithms and analyze several mathematical features of the problem which were unnoticed up to now, to our knowledge. We prove complexity results, (in-)equivalence between various notions of stabilizability, existence of Lyapunov functions, and provide a case study for a paradigmatic example introduced by Stanford and Urbano.Comment: 19 pages, 3 figure
    • …
    corecore