63,885 research outputs found

    An Excursion-Theoretic Approach to Stability ofDiscrete-Time Stochastic Hybrid Systems

    Get PDF
    We address stability of a class of Markovian discrete-time stochastic hybrid systems. This class of systems is characterized by the state-space of the system being partitioned into a safe or target set and its exterior, and the dynamics of the system being different in each domain. We give conditions for L 1-boundedness of Lyapunov functions based on certain negative drift conditions outside the target set, together with some more minor assumptions. We then apply our results to a wide class of randomly switched systems (or iterated function systems), for which we give conditions for global asymptotic stability almost surely and in L 1. The systems need not be time-homogeneous, and our results apply to certain systems for which functional-analytic or martingale-based estimates are difficult or impossible to ge

    An Excursion-Theoretic Approach to Stability of Discrete-Time Stochastic Hybrid Systems

    Full text link
    We address stability of a class of Markovian discrete-time stochastic hybrid systems. This class of systems is characterized by the state-space of the system being partitioned into a safe or target set and its exterior, and the dynamics of the system being different in each domain. We give conditions for L1L_1-boundedness of Lyapunov functions based on certain negative drift conditions outside the target set, together with some more minor assumptions. We then apply our results to a wide class of randomly switched systems (or iterated function systems), for which we give conditions for global asymptotic stability almost surely and in L1L_1. The systems need not be time-homogeneous, and our results apply to certain systems for which functional-analytic or martingale-based estimates are difficult or impossible to get.Comment: Revised. 17 pages. To appear in Applied Mathematics & Optimizatio

    Convergence Rate of Nonlinear Switched Systems

    Full text link
    This paper is concerned with the convergence rate of the solutions of nonlinear switched systems. We first consider a switched system which is asymptotically stable for a class of inputs but not for all inputs. We show that solutions corresponding to that class of inputs converge arbitrarily slowly to the origin. Then we consider analytic switched systems for which a common weak quadratic Lyapunov function exists. Under two different sets of assumptions we provide explicit exponential convergence rates for inputs with a fixed dwell-time

    Converse results on existence of sum of squares Lyapunov functions

    Get PDF
    Despite the pervasiveness of sum of squares (sos) techniques in Lyapunov analysis of dynamical systems, the converse question of whether sos Lyapunov functions exist whenever polynomial Lyapunov functions exist has remained elusive. In this paper, we first show via an explicit counterexample that if the degree of the polynomial Lyapunov function is fixed, then sos programming can fail to find a valid Lyapunov function even though one exists. On the other hand, if the degree is allowed to increase, we prove that existence of a polynomial Lyapunov function for a homogeneous polynomial vector field implies existence of a polynomial Lyapunov function that is sos and that the negative of its derivative is also sos. The latter result is extended to develop a converse sos Lyapunov theorem for robust stability of switched linear systems

    Disease spread over randomly switched large-scale networks

    Full text link
    In this paper we study disease spread over a randomly switched network, which is modeled by a stochastic switched differential equation based on the so called NN-intertwined model for disease spread over static networks. Assuming that all the edges of the network are independently switched, we present sufficient conditions for the convergence of infection probability to zero. Though the stability theory for switched linear systems can naively derive a necessary and sufficient condition for the convergence, the condition cannot be used for large-scale networks because, for a network with nn agents, it requires computing the maximum real eigenvalue of a matrix of size exponential in nn. On the other hand, our conditions that are based also on the spectral theory of random matrices can be checked by computing the maximum real eigenvalue of a matrix of size exactly nn

    Lower Bounds on Complexity of Lyapunov Functions for Switched Linear Systems

    Full text link
    We show that for any positive integer dd, there are families of switched linear systems---in fixed dimension and defined by two matrices only---that are stable under arbitrary switching but do not admit (i) a polynomial Lyapunov function of degree ≤d\leq d, or (ii) a polytopic Lyapunov function with ≤d\leq d facets, or (iii) a piecewise quadratic Lyapunov function with ≤d\leq d pieces. This implies that there cannot be an upper bound on the size of the linear and semidefinite programs that search for such stability certificates. Several constructive and non-constructive arguments are presented which connect our problem to known (and rather classical) results in the literature regarding the finiteness conjecture, undecidability, and non-algebraicity of the joint spectral radius. In particular, we show that existence of an extremal piecewise algebraic Lyapunov function implies the finiteness property of the optimal product, generalizing a result of Lagarias and Wang. As a corollary, we prove that the finiteness property holds for sets of matrices with an extremal Lyapunov function belonging to some of the most popular function classes in controls
    • …
    corecore