72,842 research outputs found

    Approachability in Population Games

    Get PDF
    This paper reframes approachability theory within the context of population games. Thus, whilst one player aims at driving her average payoff to a predefined set, her opponent is not malevolent but rather extracted randomly from a population of individuals with given distribution on actions. First, convergence conditions are revisited based on the common prior on the population distribution, and we define the notion of \emph{1st-moment approachability}. Second, we develop a model of two coupled partial differential equations (PDEs) in the spirit of mean-field game theory: one describing the best-response of every player given the population distribution (this is a \emph{Hamilton-Jacobi-Bellman equation}), the other capturing the macroscopic evolution of average payoffs if every player plays its best response (this is an \emph{advection equation}). Third, we provide a detailed analysis of existence, nonuniqueness, and stability of equilibria (fixed points of the two PDEs). Fourth, we apply the model to regret-based dynamics, and use it to establish convergence to Bayesian equilibrium under incomplete information

    Pseudo derivative evolutionary algorithm and convergence analysis

    Get PDF

    Ensuring successful introduction of Wolbachia in natural populations of Aedes aegypti by means of feedback control

    Full text link
    The control of the spread of dengue fever by introduction of the intracellular parasitic bacterium Wolbachia in populations of the vector Aedes aegypti, is presently one of the most promising tools for eliminating dengue, in the absence of an efficient vaccine. The success of this operation requires locally careful planning to determine the adequate number of individuals carrying the Wolbachia parasite that need to be introduced into the natural population. The introduced mosquitoes are expected to eventually replace the Wolbachia-free population and guarantee permanent protection against the transmission of dengue to human. In this study, we propose and analyze a model describing the fundamental aspects of the competition between mosquitoes carrying Wolbachia and mosquitoes free of the parasite. We then use feedback control techniques to devise an introduction protocol which is proved to guarantee that the population converges to a stable equilibrium where the totality of mosquitoes carry Wolbachia.Comment: 24 pages, 5 figure

    Trait evolution in two-sex populations

    Full text link
    We present an individual-based model of phenotypic trait evolution in two-sex populations, which includes semi-random mating of individuals of the opposite sex, natural death and intra-specific competition. By passing the number of individuals to infinity, we derive the macroscopic system of nonlinear differential equations describing the evolution of trait distributions in male and female subpopulations. We study solutions, give criteria for persistence or extinction, and state theorem on asymptotic stability, which we apply later to particular examples of trait inheritance

    Deterministic Equations for Stochastic Spatial Evolutionary Games

    Get PDF
    Spatial evolutionary games model individuals who are distributed in a spatial domain and update their strategies upon playing a normal form game with their neighbors. We derive integro-differential equations as deterministic approximations of the microscopic updating stochastic processes. This generalizes the known mean-field ordinary differential equations and provide a powerful tool to investigate the spatial effects in populations evolution. The deterministic equations allow to identify many interesting features of the evolution of strategy profiles in a population, such as standing and traveling waves, and pattern formation, especially in replicator-type evolutions
    corecore