39,898 research outputs found

    Stabilizing Randomly Switched Systems

    Full text link
    This article is concerned with stability analysis and stabilization of randomly switched systems under a class of switching signals. The switching signal is modeled as a jump stochastic (not necessarily Markovian) process independent of the system state; it selects, at each instant of time, the active subsystem from a family of systems. Sufficient conditions for stochastic stability (almost sure, in the mean, and in probability) of the switched system are established when the subsystems do not possess control inputs, and not every subsystem is required to be stable. These conditions are employed to design stabilizing feedback controllers when the subsystems are affine in control. The analysis is carried out with the aid of multiple Lyapunov-like functions, and the analysis results together with universal formulae for feedback stabilization of nonlinear systems constitute our primary tools for control designComment: 22 pages. Submitte

    Stability Analysis of Continuous-Time Switched Systems with a Random Switching Signal

    Get PDF
    This paper is concerned with the stability analysis of continuous-time switched systems with a random switching signal. The switching signal manifests its characteristics with that the dwell time in each subsystem consists of a fixed part and a random part. The stochastic stability of such switched systems is studied using a Lyapunov approach. A necessary and sufficient condition is established in terms of linear matrix inequalities. The effect of the random switching signal on system stability is illustrated by a numerical example and the results coincide with our intuition.Comment: 6 pages, 6 figures, accepted by IEEE-TA

    A general stability criterion for switched linear systems having stable and unstable subsystems

    Get PDF
    We report conditions on a switching signal that guarantee that solutions of a switched linear systems converge asymptotically to zero. These conditions are apply to continuous, discrete-time and hybrid switched linear systems, both those having stable subsystems and mixtures of stable and unstable subsystems

    Stability Criteria for SIS Epidemiological Models under Switching Policies

    Get PDF
    We study the spread of disease in an SIS model. The model considered is a time-varying, switched model, in which the parameters of the SIS model are subject to abrupt change. We show that the joint spectral radius can be used as a threshold parameter for this model in the spirit of the basic reproduction number for time-invariant models. We also present conditions for persistence and the existence of periodic orbits for the switched model and results for a stochastic switched model

    Symbolic Models for Stochastic Switched Systems: A Discretization and a Discretization-Free Approach

    Full text link
    Stochastic switched systems are a relevant class of stochastic hybrid systems with probabilistic evolution over a continuous domain and control-dependent discrete dynamics over a finite set of modes. In the past few years several different techniques have been developed to assist in the stability analysis of stochastic switched systems. However, more complex and challenging objectives related to the verification of and the controller synthesis for logic specifications have not been formally investigated for this class of systems as of yet. With logic specifications we mean properties expressed as formulae in linear temporal logic or as automata on infinite strings. This paper addresses these complex objectives by constructively deriving approximately equivalent (bisimilar) symbolic models of stochastic switched systems. More precisely, this paper provides two different symbolic abstraction techniques: one requires state space discretization, but the other one does not require any space discretization which can be potentially more efficient than the first one when dealing with higher dimensional stochastic switched systems. Both techniques provide finite symbolic models that are approximately bisimilar to stochastic switched systems under some stability assumptions on the concrete model. This allows formally synthesizing controllers (switching signals) that are valid for the concrete system over the finite symbolic model, by means of mature automata-theoretic techniques in the literature. The effectiveness of the results are illustrated by synthesizing switching signals enforcing logic specifications for two case studies including temperature control of a six-room building.Comment: 25 pages, 4 figures. arXiv admin note: text overlap with arXiv:1302.386
    • …
    corecore