835 research outputs found

    On adaptive control and particle filtering in the automatic administration of medicinal drugs

    Get PDF
    Automatic feedback methodologies for the administration of medicinal drugs offer undisputed potential benefits in terms of cost reduction and improved clinical outcomes. However, despite several decades of research, the ultimate safety of many--it would be fair to say most--closed-loop drug delivery approaches remains under question and manual methods based on clinicians' expertise are still dominant in clinical practice. Key challenges to the design of control systems for these applications include uncertainty in pharmacological models, as well as intra- and interpatient variability in the response to drug administration. Pharmacological systems may feature nonlinearities, time delays, time-varying parameters and non-Gaussian stochastic processes. This dissertation investigates a novel multi-controller adaptive control strategy capable of delivering safe control for closed-loop drug delivery applications without impairing clinicians' ability to make an expert assessment of a clinical situation. Our new feedback control approach, which we have named Robust Adaptive Control with Particle Filtering (RAC-PF), estimates a patient's individual response characteristic in real-time through particle filtering and uses the Bayesian inference result to select the most suitable controller for closed-loop operation from a bank of candidate controllers designed using the robust methodology of mu-synthesis. The work is presented as four distinct pieces of research. We first apply the existing approach of Robust Multiple-Model Adaptive Control (RMMAC), which features robust controllers and Kalman filter estimators, to the case-study of administration of the vasodepressor drug sodium nitroprusside and examine benefits and drawbacks. We then consider particle filtering as an alternative to Kalman filter-based methods for the real-time estimation of pharmacological dose-response, and apply this to the nonlinear pharmacokinetic-pharmacodynamic model of the anaesthetic drug propofol. We ultimately combine particle filters and robust controllers to create RAC-PF, and test our novel approach first in a proof-of-concept design and finally in the case of sodium nitroprusside. The results presented in the dissertation are based on computational studies, including extensive Monte-Carlo simulation campaigns. Our findings of improved parameter estimates from noisy observations support the use of particle filtering as a viable tool for real-time Bayesian inference in pharmacological system identification. The potential of the RAC-PF approach as an extension of RMMAC for closed-loop control of a broader class of systems is also clearly highlighted, with the proposed new approach delivering safe control of acute hypertension through sodium nitroprusside infusion when applied to a very general population response model. All approaches presented are generalisable and may be readily adapted to other drug delivery instances

    Response theory and critical phenomena for noisy interacting systems

    Get PDF
    In this thesis we investigate critical phenomena for ensembles of identical interacting agents, namely weakly interacting diffusions. These interacting systems undergo two qualitatively different scenarios of criticality, critical transitions and phase transitions. The former situation conforms to the classical tipping point phenomenology that is observed in finite dimensional systems and originates from a setting where negative feedbacks that stabilise the system progressively loose their efficiency, resulting in amplified fluctuations and correlation properties of the system. On the other hand, \textit{phase transitions} stem from the complex interplay between the agents' own dynamics, the coupling among them and the noise, leading to macroscopic emergent behaviour of the system, and are only observed in the thermodynamic limit. Classically, \textit{phase transitions} are investigated with the use of suitable macroscopic variables, called order parameters, acting as effective reaction coordinates that capture the relevant features of the macroscopic dynamics. However, identifying an order parameter is not always possible. In this thesis we adopt a complementary point of view, based on Linear Response theory, to investigate such critical phenomena. We are able to identify the conditions leading either to a critical transition or a phase transition in terms of spectral properties of suitable response operators. We associate critical phenomena to settings where the response of the system breaks down. In particular, we are able to characterise these critical scenarios as settings where the complex valued susceptibility of the system develops a non analytical behaviour for real values of frequencies, resulting in a macroscopic resonance of the system. We provide multiple paradigmatic examples of equilibrium and nonequilibrium phase transitions where we are able to prove mathematically and numerically the clear signature of a singular behaviour of the susceptibility at the phase transition as the thermodynamic limit is reached. Being associated to spectral properties of suitable operators describing either correlation or response properties, these resonant phenomena do not depend on the specific details of the applied forcing nor on the observable under investigation, allowing one to bypass the problem of the identification of the order parameter for the system.Open Acces

    Examining macroeconomic models through the lens of asset pricing

    Get PDF
    Dynamic stochastic equilibrium models of the macro economy are designed to match the macro time series including impulse response functions. Since these models aim to be structural, they also have implications for asset pricing. To assess these implications, we explore asset pricing counterparts to impulse response functions. We use the resulting dynamic value decomposition (DVD) methods to quantify the exposures of macroeconomic cash flows to shocks over alternative investment horizons and the corresponding prices or compensations that investors must receive because of the exposure to such shocks. We build on the continuous-time methods developed in Hansen and Scheinkman (2010), Borovicka et al. (2011) and Hansen (2011) by constructing discrete-time shock elasticities that measure the sensitivity of cash flows and their prices to economic shocks including economic shocks featured in the empirical macroeconomics literature. By design, our methods are applicable to economic models that are nonlinear, including models with stochastic volatility. We illustrate our methods by analyzing the asset pricing model of Ai et al. (2010) with tangible and intangible capital.Asset pricing ; Macroeconomics ; Markov processes

    Using underapproximations for sparse nonnegative matrix factorization

    Get PDF
    Nonnegative Matrix Factorization (NMF) has gathered a lot of attention in the last decade and has been successfully applied in numerous applications. It consists in the factorization of a nonnegative matrix by the product of two low-rank nonnegative matrices:. MªVW. In this paper, we attempt to solve NMF problems in a recursive way. In order to do that, we introduce a new variant called Nonnegative Matrix Underapproximation (NMU) by adding the upper bound constraint VW£M. Besides enabling a recursive procedure for NMF, these inequalities make NMU particularly well suited to achieve a sparse representation, improving the part-based decomposition. Although NMU is NP-hard (which we prove using its equivalence with the maximum edge biclique problem in bipartite graphs), we present two approaches to solve it: a method based on convex reformulations and a method based on Lagrangian relaxation. Finally, we provide some encouraging numerical results for image processing applications.nonnegative matrix factorization, underapproximation, maximum edge biclique problem, sparsity, image processing

    System analysis via integral quadratic constraints

    Full text link
    corecore