1,318 research outputs found

    Graphs that are not pairwise compatible: A new proof technique (extended abstract)

    Get PDF
    A graph G = (V,E) is a pairwise compatibility graph (PCG) if there exists an edge-weighted tree T and two non-negative real numbers dminand dmax, dmin≤ dmax, such that each node u∈V is uniquely associated to a leaf of T and there is an edge (u, v) ∈ E if and only if dmin≤ dT(u, v) ≤ dmax, where dT(u, v) is the sum of the weights of the edges on the unique path PT(u, v) from u to v in T. Understanding which graph classes lie inside and which ones outside the PCG class is an important issue. Despite numerous efforts, a complete characterization of the PCG class is not known yet. In this paper we propose a new proof technique that allows us to show that some interesting classes of graphs have empty intersection with PCG. We demonstrate our technique by showing many graph classes that do not lie in PCG. As a side effect, we show a not pairwise compatibility planar graph with 8 nodes (i.e. C28), so improving the previously known result concerning the smallest planar graph known not to be PCG

    Nonrepetitive Colourings of Planar Graphs with O(logn)O(\log n) Colours

    Get PDF
    A vertex colouring of a graph is \emph{nonrepetitive} if there is no path for which the first half of the path is assigned the same sequence of colours as the second half. The \emph{nonrepetitive chromatic number} of a graph GG is the minimum integer kk such that GG has a nonrepetitive kk-colouring. Whether planar graphs have bounded nonrepetitive chromatic number is one of the most important open problems in the field. Despite this, the best known upper bound is O(n)O(\sqrt{n}) for nn-vertex planar graphs. We prove a O(logn)O(\log n) upper bound
    corecore