4,904 research outputs found

    Dynamic fluctuations coincide with periods of high and low modularity in resting-state functional brain networks

    Full text link
    We investigate the relationship of resting-state fMRI functional connectivity estimated over long periods of time with time-varying functional connectivity estimated over shorter time intervals. We show that using Pearson's correlation to estimate functional connectivity implies that the range of fluctuations of functional connections over short time scales is subject to statistical constraints imposed by their connectivity strength over longer scales. We present a method for estimating time-varying functional connectivity that is designed to mitigate this issue and allows us to identify episodes where functional connections are unexpectedly strong or weak. We apply this method to data recorded from N=80N=80 participants, and show that the number of unexpectedly strong/weak connections fluctuates over time, and that these variations coincide with intermittent periods of high and low modularity in time-varying functional connectivity. We also find that during periods of relative quiescence regions associated with default mode network tend to join communities with attentional, control, and primary sensory systems. In contrast, during periods where many connections are unexpectedly strong/weak, default mode regions dissociate and form distinct modules. Finally, we go on to show that, while all functional connections can at times manifest stronger (more positively correlated) or weaker (more negatively correlated) than expected, a small number of connections, mostly within the visual and somatomotor networks, do so a disproportional number of times. Our statistical approach allows the detection of functional connections that fluctuate more or less than expected based on their long-time averages and may be of use in future studies characterizing the spatio-temporal patterns of time-varying functional connectivityComment: 47 Pages, 8 Figures, 4 Supplementary Figure

    Fluctuations between high- and low-modularity topology in time-resolved functional connectivity

    Full text link
    Modularity is an important topological attribute for functional brain networks. Recent studies have reported that modularity of functional networks varies not only across individuals being related to demographics and cognitive performance, but also within individuals co-occurring with fluctuations in network properties of functional connectivity, estimated over short time intervals. However, characteristics of these time-resolved functional networks during periods of high and low modularity have remained largely unexplored. In this study we investigate spatiotemporal properties of time-resolved networks in the high and low modularity periods during rest, with a particular focus on their spatial connectivity patterns, temporal homogeneity and test-retest reliability. We show that spatial connectivity patterns of time-resolved networks in the high and low modularity periods are represented by increased and decreased dissociation of the default mode network module from task-positive network modules, respectively. We also find that the instances of time-resolved functional connectivity sampled from within the high (low) modularity period are relatively homogeneous (heterogeneous) over time, indicating that during the low modularity period the default mode network interacts with other networks in a variable manner. We confirmed that the occurrence of the high and low modularity periods varies across individuals with moderate inter-session test-retest reliability and that it is correlated with previously-reported individual differences in the modularity of functional connectivity estimated over longer timescales. Our findings illustrate how time-resolved functional networks are spatiotemporally organized during periods of high and low modularity, allowing one to trace individual differences in long-timescale modularity to the variable occurrence of network configurations at shorter timescales.Comment: Reorganized the paper; to appear in NeuroImage; arXiv abstract shortened to fit within character limit

    Estimating Time-Varying Effective Connectivity in High-Dimensional fMRI Data Using Regime-Switching Factor Models

    Full text link
    Recent studies on analyzing dynamic brain connectivity rely on sliding-window analysis or time-varying coefficient models which are unable to capture both smooth and abrupt changes simultaneously. Emerging evidence suggests state-related changes in brain connectivity where dependence structure alternates between a finite number of latent states or regimes. Another challenge is inference of full-brain networks with large number of nodes. We employ a Markov-switching dynamic factor model in which the state-driven time-varying connectivity regimes of high-dimensional fMRI data are characterized by lower-dimensional common latent factors, following a regime-switching process. It enables a reliable, data-adaptive estimation of change-points of connectivity regimes and the massive dependencies associated with each regime. We consider the switching VAR to quantity the dynamic effective connectivity. We propose a three-step estimation procedure: (1) extracting the factors using principal component analysis (PCA) and (2) identifying dynamic connectivity states using the factor-based switching vector autoregressive (VAR) models in a state-space formulation using Kalman filter and expectation-maximization (EM) algorithm, and (3) constructing the high-dimensional connectivity metrics for each state based on subspace estimates. Simulation results show that our proposed estimator outperforms the K-means clustering of time-windowed coefficients, providing more accurate estimation of regime dynamics and connectivity metrics in high-dimensional settings. Applications to analyzing resting-state fMRI data identify dynamic changes in brain states during rest, and reveal distinct directed connectivity patterns and modular organization in resting-state networks across different states.Comment: 21 page

    Distinct neural substrates of visuospatial and verbal-analytic reasoning as assessed by Raven’s Advanced Progressive Matrices

    Get PDF
    Recent studies revealed spontaneous neural activity to be associated with fluid intelligence (gF) which is commonly assessed by Raven's Advanced Progressive Matrices, and embeds two types of reasoning: visuospatial and verbal-analytic reasoning. With resting-state fMRI data, using global brain connectivity (GBC) analysis which averages functional connectivity of a voxel in relation to all other voxels in the brain, distinct neural correlates of these two reasoning types were found. For visuospatial reasoning, negative correlations were observed in both the primary visual cortex (PVC) and the precuneus, and positive correlations were observed in the temporal lobe. For verbal-analytic reasoning, negative correlations were observed in the right inferior frontal gyrus (rIFG), dorsal anterior cingulate cortex and temporoparietal junction, and positive correlations were observed in the angular gyrus. Furthermore, an interaction between GBC value and type of reasoning was found in the PVC, rIFG and the temporal lobe. These findings suggest that visuospatial reasoning benefits more from elaborate perception to stimulus features, whereas verbal-analytic reasoning benefits more from feature integration and hypothesis testing. In sum, the present study offers, for different types of reasoning in gF, first empirical evidence of separate neural substrates in the resting brain
    corecore