47,435 research outputs found

    Optimal Topology Design for Disturbance Minimization in Power Grids

    Full text link
    The transient response of power grids to external disturbances influences their stable operation. This paper studies the effect of topology in linear time-invariant dynamics of different power grids. For a variety of objective functions, a unified framework based on H2H_2 norm is presented to analyze the robustness to ambient fluctuations. Such objectives include loss reduction, weighted consensus of phase angle deviations, oscillations in nodal frequency, and other graphical metrics. The framework is then used to study the problem of optimal topology design for robust control goals of different grids. For radial grids, the problem is shown as equivalent to the hard "optimum communication spanning tree" problem in graph theory and a combinatorial topology construction is presented with bounded approximation gap. Extended to loopy (meshed) grids, a greedy topology design algorithm is discussed. The performance of the topology design algorithms under multiple control objectives are presented on both loopy and radial test grids. Overall, this paper analyzes topology design algorithms on a broad class of control problems in power grid by exploring their combinatorial and graphical properties.Comment: 6 pages, 3 figures, a version of this work will appear in ACC 201

    Bicriteria Network Design Problems

    Full text link
    We study a general class of bicriteria network design problems. A generic problem in this class is as follows: Given an undirected graph and two minimization objectives (under different cost functions), with a budget specified on the first, find a <subgraph \from a given subgraph-class that minimizes the second objective subject to the budget on the first. We consider three different criteria - the total edge cost, the diameter and the maximum degree of the network. Here, we present the first polynomial-time approximation algorithms for a large class of bicriteria network design problems for the above mentioned criteria. The following general types of results are presented. First, we develop a framework for bicriteria problems and their approximations. Second, when the two criteria are the same %(note that the cost functions continue to be different) we present a ``black box'' parametric search technique. This black box takes in as input an (approximation) algorithm for the unicriterion situation and generates an approximation algorithm for the bicriteria case with only a constant factor loss in the performance guarantee. Third, when the two criteria are the diameter and the total edge costs we use a cluster-based approach to devise a approximation algorithms --- the solutions output violate both the criteria by a logarithmic factor. Finally, for the class of treewidth-bounded graphs, we provide pseudopolynomial-time algorithms for a number of bicriteria problems using dynamic programming. We show how these pseudopolynomial-time algorithms can be converted to fully polynomial-time approximation schemes using a scaling technique.Comment: 24 pages 1 figur

    Locating Depots for Capacitated Vehicle Routing

    Full text link
    We study a location-routing problem in the context of capacitated vehicle routing. The input is a set of demand locations in a metric space and a fleet of k vehicles each of capacity Q. The objective is to locate k depots, one for each vehicle, and compute routes for the vehicles so that all demands are satisfied and the total cost is minimized. Our main result is a constant-factor approximation algorithm for this problem. To achieve this result, we reduce to the k-median-forest problem, which generalizes both k-median and minimum spanning tree, and which might be of independent interest. We give a (3+c)-approximation algorithm for k-median-forest, which leads to a (12+c)-approximation algorithm for the above location-routing problem, for any constant c>0. The algorithm for k-median-forest is just t-swap local search, and we prove that it has locality gap 3+2/t; this generalizes the corresponding result known for k-median. Finally we consider the "non-uniform" k-median-forest problem which has different cost functions for the MST and k-median parts. We show that the locality gap for this problem is unbounded even under multi-swaps, which contrasts with the uniform case. Nevertheless, we obtain a constant-factor approximation algorithm, using an LP based approach.Comment: 12 pages, 1 figur

    Bounded Decentralised Coordination over Multiple Objectives

    No full text
    We propose the bounded multi-objective max-sum algorithm (B-MOMS), the first decentralised coordination algorithm for multi-objective optimisation problems. B-MOMS extends the max-sum message-passing algorithm for decentralised coordination to compute bounded approximate solutions to multi-objective decentralised constraint optimisation problems (MO-DCOPs). Specifically, we prove the optimality of B-MOMS in acyclic constraint graphs, and derive problem dependent bounds on its approximation ratio when these graphs contain cycles. Furthermore, we empirically evaluate its performance on a multi-objective extension of the canonical graph colouring problem. In so doing, we demonstrate that, for the settings we consider, the approximation ratio never exceeds 2, and is typically less than 1.5 for less-constrained graphs. Moreover, the runtime required by B-MOMS on the problem instances we considered never exceeds 30 minutes, even for maximally constrained graphs with 100100 agents. Thus, B-MOMS brings the problem of multi-objective optimisation well within the boundaries of the limited capabilities of embedded agents
    • …
    corecore