495 research outputs found

    On the Complexity of Finding Second-Best Abductive Explanations

    Get PDF
    While looking for abductive explanations of a given set of manifestations, an ordering between possible solutions is often assumed. The complexity of finding/verifying optimal solutions is already known. In this paper we consider the computational complexity of finding second-best solutions. We consider different orderings, and consider also different possible definitions of what a second-best solution is

    Query-Answer Causality in Databases: Abductive Diagnosis and View-Updates

    Full text link
    Causality has been recently introduced in databases, to model, characterize and possibly compute causes for query results (answers). Connections between query causality and consistency-based diagnosis and database repairs (wrt. integrity constrain violations) have been established in the literature. In this work we establish connections between query causality and abductive diagnosis and the view-update problem. The unveiled relationships allow us to obtain new complexity results for query causality -the main focus of our work- and also for the two other areas.Comment: To appear in Proc. UAI Causal Inference Workshop, 2015. One example was fixe

    Backdoors to Normality for Disjunctive Logic Programs

    Full text link
    Over the last two decades, propositional satisfiability (SAT) has become one of the most successful and widely applied techniques for the solution of NP-complete problems. The aim of this paper is to investigate theoretically how Sat can be utilized for the efficient solution of problems that are harder than NP or co-NP. In particular, we consider the fundamental reasoning problems in propositional disjunctive answer set programming (ASP), Brave Reasoning and Skeptical Reasoning, which ask whether a given atom is contained in at least one or in all answer sets, respectively. Both problems are located at the second level of the Polynomial Hierarchy and thus assumed to be harder than NP or co-NP. One cannot transform these two reasoning problems into SAT in polynomial time, unless the Polynomial Hierarchy collapses. We show that certain structural aspects of disjunctive logic programs can be utilized to break through this complexity barrier, using new techniques from Parameterized Complexity. In particular, we exhibit transformations from Brave and Skeptical Reasoning to SAT that run in time O(2^k n^2) where k is a structural parameter of the instance and n the input size. In other words, the reduction is fixed-parameter tractable for parameter k. As the parameter k we take the size of a smallest backdoor with respect to the class of normal (i.e., disjunction-free) programs. Such a backdoor is a set of atoms that when deleted makes the program normal. In consequence, the combinatorial explosion, which is expected when transforming a problem from the second level of the Polynomial Hierarchy to the first level, can now be confined to the parameter k, while the running time of the reduction is polynomial in the input size n, where the order of the polynomial is independent of k.Comment: A short version will appear in the Proceedings of the Proceedings of the 27th AAAI Conference on Artificial Intelligence (AAAI'13). A preliminary version of the paper was presented on the workshop Answer Set Programming and Other Computing Paradigms (ASPOCP 2012), 5th International Workshop, September 4, 2012, Budapest, Hungar

    Some thoughts on theoretical physics

    Full text link
    Some thoughts are presented on the inter-relation between beauty and truth in science in general and theoretical physics in particular. Some conjectural procedures that can be used to create new ideas, concepts and results are illustrated in both Boltzmann-Gibbs and nonextensive statistical mechanics. The sociological components of scientific progress and its unavoidable and benefic controversies are, mainly through existing literary texts, briefly addressed as well.Comment: Short essay based on the plenary talk given at the International Workshop on Trends and Perspectives in Extensive and Non-Extensive Statistical Mechanics, held in November 19-21, 2003, in Angra dos Reis, Brazil. To appear in a Physica A special volume (2004) edited by E.M.F. Curado, H.J. Herrmann and M. Barbosa. 23 pages, including 3 figures. The new version has 25 pages and the same figures. The texts by Saramago and by Bersanelli are now translated into English. A few typos and minor improvements are included as wel

    Abduction in Well-Founded Semantics and Generalized Stable Models

    Full text link
    Abductive logic programming offers a formalism to declaratively express and solve problems in areas such as diagnosis, planning, belief revision and hypothetical reasoning. Tabled logic programming offers a computational mechanism that provides a level of declarativity superior to that of Prolog, and which has supported successful applications in fields such as parsing, program analysis, and model checking. In this paper we show how to use tabled logic programming to evaluate queries to abductive frameworks with integrity constraints when these frameworks contain both default and explicit negation. The result is the ability to compute abduction over well-founded semantics with explicit negation and answer sets. Our approach consists of a transformation and an evaluation method. The transformation adjoins to each objective literal OO in a program, an objective literal not(O)not(O) along with rules that ensure that not(O)not(O) will be true if and only if OO is false. We call the resulting program a {\em dual} program. The evaluation method, \wfsmeth, then operates on the dual program. \wfsmeth{} is sound and complete for evaluating queries to abductive frameworks whose entailment method is based on either the well-founded semantics with explicit negation, or on answer sets. Further, \wfsmeth{} is asymptotically as efficient as any known method for either class of problems. In addition, when abduction is not desired, \wfsmeth{} operating on a dual program provides a novel tabling method for evaluating queries to ground extended programs whose complexity and termination properties are similar to those of the best tabling methods for the well-founded semantics. A publicly available meta-interpreter has been developed for \wfsmeth{} using the XSB system.Comment: 48 pages; To appear in Theory and Practice in Logic Programmin

    Secondary predication in Russian

    Get PDF
    The paper makes two contributions to semantic typology of secondary predicates. It provides an explanation of the fact that Russian has no resultative secondary predicates, relating this explanation to the interpretation of secondary predicates in English. And it relates depictive secondary predicates in Russian, which usually occur in the instrumental case, to other uses of the instrumental case in Russian, establishing here, too, a difference to English concerning the scope of the secondary predication phenomenon

    On abduction and answer generation through constrained resolution

    Get PDF
    Recently, extensions of constrained logic programming and constrained resolution for theorem proving have been introduced, that consider constraints, which are interpreted under an open world assumption. We discuss relationships between applications of these approaches for query answering in knowledge base systems on the one hand and abduction-based hypothetical reasoning on the other hand. We show both that constrained resolution can be used as an operationalization of (some limited form of) abduction and that abduction is the logical status of an answer generation process through constrained resolution, ie., it is an abductive but not a deductive form of reasoning

    Complexity Classifications for logic-based Argumentation

    Full text link
    We consider logic-based argumentation in which an argument is a pair (Fi,al), where the support Fi is a minimal consistent set of formulae taken from a given knowledge base (usually denoted by De) that entails the claim al (a formula). We study the complexity of three central problems in argumentation: the existence of a support Fi ss De, the validity of a support and the relevance problem (given psi is there a support Fi such that psi ss Fi?). When arguments are given in the full language of propositional logic these problems are computationally costly tasks, the validity problem is DP-complete, the others are SigP2-complete. We study these problems in Schaefer's famous framework where the considered propositional formulae are in generalized conjunctive normal form. This means that formulae are conjunctions of constraints build upon a fixed finite set of Boolean relations Ga (the constraint language). We show that according to the properties of this language Ga, deciding whether there exists a support for a claim in a given knowledge base is either polynomial, NP-complete, coNP-complete or SigP2-complete. We present a dichotomous classification, P or DP-complete, for the verification problem and a trichotomous classification for the relevance problem into either polynomial, NP-complete, or SigP2-complete. These last two classifications are obtained by means of algebraic tools
    • ā€¦
    corecore