16 research outputs found

    Multi-point static dexterous posture manipulation for the stiffness identification of serial kinematic end-effectors.

    Get PDF
    Masters Degree. University of KwaZulu-Natal, Durban.The low stiffness inherent in serial robots hinders its application to perform advanced operations due to its reduced accuracy imparted through deformations within the links and joints. The high repeatability, extended workspace, and speed of serial manipulators make them appealing to perform precision operations as opposed to its alternative, the CNC machine. However, due to the serial arrangement of the linkages of the system, they lack the accuracy to meet present-day demands. To address the low stiffness problem, this research provided a low-cost dexterous posture identification method. The study investigated the joint stiffness of a Fanuc M10-iA 6 Degree of Freedom (DOF) serial manipulator. The investigation involved a multivariable analysis that focused on the robot’s workspace, kinematic singularity, and dexterity to locate high stiffness areas and postures. The joint stiffness modelling applied the Virtual Joint Method (VJM), which replaced the complicated mechanical robot joints with one-dimensional (1-D) springs. The effects of stress and deflection are linearly related; the highest stress in a robot’s structure is distributed to the higher load-bearing elements such as the robot joints, end-effector, and tool. Therefore, by locating optimal postures, the induced stresses can be better regulated throughout the robot’s structure, thereby reducing resonant vibrations of the system and improving process accuracy and repeatability. These aspects are quantifiably pitched in terms of the magnitude differences in the end-effector deflection. The unique combination of the dexterity and the stiffness analyses aimed to provide roboticists and manufacturers with an easy and systematic solution to improve the stiffness, accuracy, and repeatability of their serial robots. A simple, user-friendly and cost-effective alternative to deflection measurements using accelerometers is provided, which offers an alternative to laser tracking devices that are commonly used for studies of this nature. The first investigation focused on identifying the overall workspace of the Fanuc M-10iA robot. The reachable workspace was investigated to understand the functionality and potential of the Fanuc robot. Most robotic studies stem from analysing the workspace since the workspace is a governing factor of the manipulator and end-effector placement, and its operations, in a manufacturing setting. The second investigation looked at identifying non-reachable areas and points surrounding the robot. This analysis, along with the workspace examination, provided a conclusive testing platform to test the dexterity and stiffness methodologies. Although the research focused on fixing the end-effector at a point (static case), the testing platform was structured precisely to cater for all robotic manufacturing tasks that are subjected to high applied forces and vibrations. Such tasks include, but are not limited to, drilling, tapping, fastening, or welding, and some dynamic and hybrid manufacturing operations. The third investigation was the application of a dexterous study that applied an Inverse Kinematic (IK) method to localise multiple robot configurations about a user-defined point in space. This process was necessary since the study is based on a multi-point dexterous posture identification technique to improve the stiffness of Serial Kinematic Machines (SKMs). The stiffness at various points and configurations were tested, which provided a series of stiff and non-stiff areas and postures within the robot’s workspace. MATLAB®, a technical computing software, was used to model the workspace and singularity of the robot. The dexterity and stiffness analyses were numerically evaluated using Wolfram Mathematica. The multivariable analyses served to improve the accuracy of serial robots and promote their functionality towards high force application manufacturing tasks. Apart from the improved stiffness performance offered, the future benefit of the method could advance the longevity of the robot as well as minimise the regular robot maintenance that is often required due to excessive loading, stress, and strain on the robot motors, joints, and links

    Proceedings of the NASA Conference on Space Telerobotics, volume 4

    Get PDF
    Papers presented at the NASA Conference on Space Telerobotics are compiled. The theme of the conference was man-machine collaboration in space. The conference provided a forum for researchers and engineers to exchange ideas on the research and development required for the application of telerobotic technology to the space systems planned for the 1990's and beyond. Volume 4 contains papers related to the following subject areas: manipulator control; telemanipulation; flight experiments (systems and simulators); sensor-based planning; robot kinematics, dynamics, and control; robot task planning and assembly; and research activities at the NASA Langley Research Center

    Study of robotics systems applications to the space station program

    Get PDF
    Applications of robotics systems to potential uses of the Space Station as an assembly facility, and secondarily as a servicing facility, are considered. A typical robotics system mission is described along with the pertinent application guidelines and Space Station environmental assumptions utilized in developing the robotic task scenarios. A functional description of a supervised dual-robot space structure construction system is given, and four key areas of robotic technology are defined, described, and assessed. Alternate technologies for implementing the more routine space technology support subsystems that will be required to support the Space Station robotic systems in assembly and servicing tasks are briefly discussed. The environmental conditions impacting on the robotic configuration design and operation are reviewed

    Proceedings of the NASA Conference on Space Telerobotics, volume 5

    Get PDF
    Papers presented at the NASA Conference on Space Telerobotics are compiled. The theme of the conference was man-machine collaboration in space. The conference provided a forum for researchers and engineers to exchange ideas on the research and development required for the application of telerobotics technology to the space systems planned for the 1990's and beyond. Volume 5 contains papers related to the following subject areas: robot arm modeling and control, special topics in telerobotics, telerobotic space operations, manipulator control, flight experiment concepts, manipulator coordination, issues in artificial intelligence systems, and research activities at the Johnson Space Center

    Parallel Manipulators

    Get PDF
    In recent years, parallel kinematics mechanisms have attracted a lot of attention from the academic and industrial communities due to potential applications not only as robot manipulators but also as machine tools. Generally, the criteria used to compare the performance of traditional serial robots and parallel robots are the workspace, the ratio between the payload and the robot mass, accuracy, and dynamic behaviour. In addition to the reduced coupling effect between joints, parallel robots bring the benefits of much higher payload-robot mass ratios, superior accuracy and greater stiffness; qualities which lead to better dynamic performance. The main drawback with parallel robots is the relatively small workspace. A great deal of research on parallel robots has been carried out worldwide, and a large number of parallel mechanism systems have been built for various applications, such as remote handling, machine tools, medical robots, simulators, micro-robots, and humanoid robots. This book opens a window to exceptional research and development work on parallel mechanisms contributed by authors from around the world. Through this window the reader can get a good view of current parallel robot research and applications

    Proceedings of the NASA Conference on Space Telerobotics, volume 3

    Get PDF
    The theme of the Conference was man-machine collaboration in space. The Conference provided a forum for researchers and engineers to exchange ideas on the research and development required for application of telerobotics technology to the space systems planned for the 1990s and beyond. The Conference: (1) provided a view of current NASA telerobotic research and development; (2) stimulated technical exchange on man-machine systems, manipulator control, machine sensing, machine intelligence, concurrent computation, and system architectures; and (3) identified important unsolved problems of current interest which can be dealt with by future research

    Robot Manipulators

    Get PDF
    Robot manipulators are developing more in the direction of industrial robots than of human workers. Recently, the applications of robot manipulators are spreading their focus, for example Da Vinci as a medical robot, ASIMO as a humanoid robot and so on. There are many research topics within the field of robot manipulators, e.g. motion planning, cooperation with a human, and fusion with external sensors like vision, haptic and force, etc. Moreover, these include both technical problems in the industry and theoretical problems in the academic fields. This book is a collection of papers presenting the latest research issues from around the world
    corecore