1,883 research outputs found

    Qualitatively adequate numerical modelling of spatial SIRS-type disease propagation

    Get PDF
    The aim of this paper is the investigation of some discrete iterative models that can be used for modeling spatial disease propagation. In our model, we take into account the spatial inhomogenity of the densities of the susceptible, infected and recovered subpopulations and we also suppose vital dynamics. We formulate some characteristic qualitative properties of the model such as nonnegativity and monotonicity and give sufficient conditions that guarantee these properties a priori. Our discrete model can be considered as some discrete approximation of continuous models of the disease propagation given in the form of systems of partial or integro-differential equations. In this way we will be able to give conditions for the mesh size and the time step of the discretisation method in order to guarantee the qualitative properties. Some of the results are demonstrated on numerical tests

    Epidemic processes in complex networks

    Get PDF
    In recent years the research community has accumulated overwhelming evidence for the emergence of complex and heterogeneous connectivity patterns in a wide range of biological and sociotechnical systems. The complex properties of real-world networks have a profound impact on the behavior of equilibrium and nonequilibrium phenomena occurring in various systems, and the study of epidemic spreading is central to our understanding of the unfolding of dynamical processes in complex networks. The theoretical analysis of epidemic spreading in heterogeneous networks requires the development of novel analytical frameworks, and it has produced results of conceptual and practical relevance. A coherent and comprehensive review of the vast research activity concerning epidemic processes is presented, detailing the successful theoretical approaches as well as making their limits and assumptions clear. Physicists, mathematicians, epidemiologists, computer, and social scientists share a common interest in studying epidemic spreading and rely on similar models for the description of the diffusion of pathogens, knowledge, and innovation. For this reason, while focusing on the main results and the paradigmatic models in infectious disease modeling, the major results concerning generalized social contagion processes are also presented. Finally, the research activity at the forefront in the study of epidemic spreading in coevolving, coupled, and time-varying networks is reported.Comment: 62 pages, 15 figures, final versio

    Qualitative properties of some discrete models of disease propagation

    Get PDF
    In this paper the qualitative properties of certain spatial disease propagation models are investigated. The paper can be considered as a generalization of the papers (Faragóand Horváth, 2016; 2017). The models of these papers assume that the members of the population do not move and that the infection is localized in the sense that only the members in a certain neighbourhood of the infective member can be infected. The considered qualitative properties were: the nonnegativity and the monotonicity of the density functions, and the preservation of the amount of the members. Sufficient conditions for these properties were obtained for the mesh size and the time step in certain finite difference solutions of the model. In these works, the one-dimensional case was investigated only. The present paper extends the above result in two directions: with results for higher dimensional problems and for another disease propagation model given in Capasso (2008). Here the members are allowed to move according to some diffusion law. Similarly to the previous model, sufficient conditions are given that guarantee the validity of the qualitative properties. We focus only on the properties of the discrete models. The results are verified on test problems. © 2017 Elsevier B.V

    High order discretizations for spatial dependent SIR models

    Get PDF
    In this paper, an SIR model with spatial dependence is studied and results regarding its stability and numerical approximation are presented. We consider a generalization of the original Kermack and McKendrick model in which the size of the populations differs in space. The use of local spatial dependence yields a system of integro-differential equations. The uniqueness and qualitative properties of the continuous model are analyzed. Furthermore, different choices of spatial and temporal discretizations are employed, and step-size restrictions for population conservation, positivity, and monotonicity preservation of the discrete model are investigated. We provide sufficient conditions under which high order numerical schemes preserve the discrete properties of the model. Computational experiments verify the convergence and accuracy of the numerical methods.Comment: 33 pages, 5 figures, 3 table

    Metapopulation epidemic models with heterogeneous mixing and travel behaviour.

    Get PDF
    BACKGROUND: Determining the pandemic potential of an emerging infectious disease and how it depends on the various epidemic and population aspects is critical for the preparation of an adequate response aimed at its control. The complex interplay between population movements in space and non-homogeneous mixing patterns have so far hindered the fundamental understanding of the conditions for spatial invasion through a general theoretical framework. To address this issue, we present an analytical modelling approach taking into account such interplay under general conditions of mobility and interactions, in the simplifying assumption of two population classes. METHODS: We describe a spatially structured population with non-homogeneous mixing and travel behaviour through a multi-host stochastic epidemic metapopulation model. Different population partitions, mixing patterns and mobility structures are considered, along with a specific application for the study of the role of age partition in the early spread of the 2009 H1N1 pandemic influenza. RESULTS: We provide a complete mathematical formulation of the model and derive a semi-analytical expression of the threshold condition for global invasion of an emerging infectious disease in the metapopulation system. A rich solution space is found that depends on the social partition of the population, the pattern of contacts across groups and their relative social activity, the travel attitude of each class, and the topological and traffic features of the mobility network. Reducing the activity of the less social group and reducing the cross-group mixing are predicted to be the most efficient strategies for controlling the pandemic potential in the case the less active group constitutes the majority of travellers. If instead traveling is dominated by the more social class, our model predicts the existence of an optimal across-groups mixing that maximises the pandemic potential of the disease, whereas the impact of variations in the activity of each group is less important. CONCLUSIONS: The proposed modelling approach introduces a theoretical framework for the study of infectious diseases spread in a population with two layers of heterogeneity relevant for the local transmission and the spatial propagation of the disease. It can be used for pandemic preparedness studies to identify adequate interventions and quantitatively estimate the corresponding required effort, as well as in an emerging epidemic situation to assess the pandemic potential of the pathogen from population and early outbreak data

    Generalized empty-interval method applied to a class of one-dimensional stochastic models

    Full text link
    In this work we study, on a finite and periodic lattice, a class of one-dimensional (bimolecular and single-species) reaction-diffusion models which cannot be mapped onto free-fermion models. We extend the conventional empty-interval method, also called {\it interparticle distribution function} (IPDF) method, by introducing a string function, which is simply related to relevant physical quantities. As an illustration, we specifically consider a model which cannot be solved directly by the conventional IPDF method and which can be viewed as a generalization of the {\it voter} model and/or as an {\it epidemic} model. We also consider the {\it reversible} diffusion-coagulation model with input of particles and determine other reaction-diffusion models which can be mapped onto the latter via suitable {\it similarity transformations}. Finally we study the problem of the propagation of a wave-front from an inhomogeneous initial configuration and note that the mean-field scenario predicted by Fisher's equation is not valid for the one-dimensional (microscopic) models under consideration.Comment: 19 pages, no figure. To appear in Physical Review E (November 2001
    corecore