7,263 research outputs found

    Nested (inverse) binomial sums and new iterated integrals for massive Feynman diagrams

    Full text link
    Nested sums containing binomial coefficients occur in the computation of massive operator matrix elements. Their associated iterated integrals lead to alphabets including radicals, for which we determined a suitable basis. We discuss algorithms for converting between sum and integral representations, mainly relying on the Mellin transform. To aid the conversion we worked out dedicated rewrite rules, based on which also some general patterns emerging in the process can be obtained.Comment: 13 pages LATEX, one style file, Proceedings of Loops and Legs in Quantum Field Theory -- LL2014,27 April 2014 -- 02 May 2014 Weimar, German

    Cauchy Type Integrals of Algebraic Functions

    Full text link
    We consider Cauchy type integrals I(t)=12πiγg(z)dzztI(t)={1\over 2\pi i}\int_{\gamma} {g(z)dz\over z-t} with g(z)g(z) an algebraic function. The main goal is to give constructive (at least, in principle) conditions for I(t)I(t) to be an algebraic function, a rational function, and ultimately an identical zero near infinity. This is done by relating the Monodromy group of the algebraic function gg, the geometry of the integration curve γ\gamma, and the analytic properties of the Cauchy type integrals. The motivation for the study of these conditions is provided by the fact that certain Cauchy type integrals of algebraic functions appear in the infinitesimal versions of two classical open questions in Analytic Theory of Differential Equations: the Poincar\'e Center-Focus problem and the second part of the Hilbert 16-th problem.Comment: 58 pages, 19 figure

    Iterated Binomial Sums and their Associated Iterated Integrals

    Full text link
    We consider finite iterated generalized harmonic sums weighted by the binomial (2kk)\binom{2k}{k} in numerators and denominators. A large class of these functions emerges in the calculation of massive Feynman diagrams with local operator insertions starting at 3-loop order in the coupling constant and extends the classes of the nested harmonic, generalized harmonic and cyclotomic sums. The binomially weighted sums are associated by the Mellin transform to iterated integrals over square-root valued alphabets. The values of the sums for NN \rightarrow \infty and the iterated integrals at x=1x=1 lead to new constants, extending the set of special numbers given by the multiple zeta values, the cyclotomic zeta values and special constants which emerge in the limit NN \rightarrow \infty of generalized harmonic sums. We develop algorithms to obtain the Mellin representations of these sums in a systematic way. They are of importance for the derivation of the asymptotic expansion of these sums and their analytic continuation to NCN \in \mathbb{C}. The associated convolution relations are derived for real parameters and can therefore be used in a wider context, as e.g. for multi-scale processes. We also derive algorithms to transform iterated integrals over root-valued alphabets into binomial sums. Using generating functions we study a few aspects of infinite (inverse) binomial sums.Comment: 62 pages Latex, 1 style fil

    Iterated Elliptic and Hypergeometric Integrals for Feynman Diagrams

    Full text link
    We calculate 3-loop master integrals for heavy quark correlators and the 3-loop QCD corrections to the ρ\rho-parameter. They obey non-factorizing differential equations of second order with more than three singularities, which cannot be factorized in Mellin-NN space either. The solution of the homogeneous equations is possible in terms of convergent close integer power series as 2F1_2F_1 Gau\ss{} hypergeometric functions at rational argument. In some cases, integrals of this type can be mapped to complete elliptic integrals at rational argument. This class of functions appears to be the next one arising in the calculation of more complicated Feynman integrals following the harmonic polylogarithms, generalized polylogarithms, cyclotomic harmonic polylogarithms, square-root valued iterated integrals, and combinations thereof, which appear in simpler cases. The inhomogeneous solution of the corresponding differential equations can be given in terms of iterative integrals, where the new innermost letter itself is not an iterative integral. A new class of iterative integrals is introduced containing letters in which (multiple) definite integrals appear as factors. For the elliptic case, we also derive the solution in terms of integrals over modular functions and also modular forms, using qq-product and series representations implied by Jacobi's ϑi\vartheta_i functions and Dedekind's η\eta-function. The corresponding representations can be traced back to polynomials out of Lambert--Eisenstein series, having representations also as elliptic polylogarithms, a qq-factorial 1/ηk(τ)1/\eta^k(\tau), logarithms and polylogarithms of qq and their qq-integrals. Due to the specific form of the physical variable x(q)x(q) for different processes, different representations do usually appear. Numerical results are also presented.Comment: 68 pages LATEX, 10 Figure

    The evaluation of Tornheim double sums. Part 1

    Get PDF
    We provide an explicit formula for the Tornheim double series in terms of integrals involving the Hurwitz zeta function. We also study the limit when the parameters of the Tornheim sum become natural numbers, and show that in that case it can be expressed in terms of definite integrals of triple products of Bernoulli polynomials and the Bernoulli function Ak(q):=kζ(1k,q)A_k (q): = k\zeta '(1 - k,q).Comment: 23 pages, AMS-LaTex, to appear in Journal of Number Theor

    The formal path integral and quantum mechanics

    Full text link
    Given an arbitrary Lagrangian function on \RR^d and a choice of classical path, one can try to define Feynman's path integral supported near the classical path as a formal power series parameterized by "Feynman diagrams," although these diagrams may diverge. We compute this expansion and show that it is (formally, if there are ultraviolet divergences) invariant under volume-preserving changes of coordinates. We prove that if the ultraviolet divergences cancel at each order, then our formal path integral satisfies a "Fubini theorem" expressing the standard composition law for the time evolution operator in quantum mechanics. Moreover, we show that when the Lagrangian is inhomogeneous-quadratic in velocity such that its homogeneous-quadratic part is given by a matrix with constant determinant, then the divergences cancel at each order. Thus, by "cutting and pasting" and choosing volume-compatible local coordinates, our construction defines a Feynman-diagrammatic "formal path integral" for the nonrelativistic quantum mechanics of a charged particle moving in a Riemannian manifold with an external electromagnetic field.Comment: 33 pages, many TikZ diagrams, submitted to _Journal of Mathematical Physics
    corecore