8,971 research outputs found

    Problems on q-Analogs in Coding Theory

    Full text link
    The interest in qq-analogs of codes and designs has been increased in the last few years as a consequence of their new application in error-correction for random network coding. There are many interesting theoretical, algebraic, and combinatorial coding problems concerning these q-analogs which remained unsolved. The first goal of this paper is to make a short summary of the large amount of research which was done in the area mainly in the last few years and to provide most of the relevant references. The second goal of this paper is to present one hundred open questions and problems for future research, whose solution will advance the knowledge in this area. The third goal of this paper is to present and start some directions in solving some of these problems.Comment: arXiv admin note: text overlap with arXiv:0805.3528 by other author

    Binary Cyclic Codes from Explicit Polynomials over \gf(2^m)

    Full text link
    Cyclic codes are a subclass of linear codes and have applications in consumer electronics, data storage systems, and communication systems as they have efficient encoding and decoding algorithms. In this paper, monomials and trinomials over finite fields with even characteristic are employed to construct a number of families of binary cyclic codes. Lower bounds on the minimum weight of some families of the cyclic codes are developed. The minimum weights of other families of the codes constructed in this paper are determined. The dimensions of the codes are flexible. Some of the codes presented in this paper are optimal or almost optimal in the sense that they meet some bounds on linear codes. Open problems regarding binary cyclic codes from monomials and trinomials are also presented.Comment: arXiv admin note: substantial text overlap with arXiv:1206.4687, arXiv:1206.437

    Bounds on Binary Locally Repairable Codes Tolerating Multiple Erasures

    Full text link
    Recently, locally repairable codes has gained significant interest for their potential applications in distributed storage systems. However, most constructions in existence are over fields with size that grows with the number of servers, which makes the systems computationally expensive and difficult to maintain. Here, we study linear locally repairable codes over the binary field, tolerating multiple local erasures. We derive bounds on the minimum distance on such codes, and give examples of LRCs achieving these bounds. Our main technical tools come from matroid theory, and as a byproduct of our proofs, we show that the lattice of cyclic flats of a simple binary matroid is atomic.Comment: 9 pages, 1 figure. Parts of this paper were presented at IZS 2018. This extended arxiv version includes corrected versions of Theorem 1.4 and Proposition 6 that appeared in the IZS 2018 proceeding

    On Binary Matroid Minors and Applications to Data Storage over Small Fields

    Full text link
    Locally repairable codes for distributed storage systems have gained a lot of interest recently, and various constructions can be found in the literature. However, most of the constructions result in either large field sizes and hence too high computational complexity for practical implementation, or in low rates translating into waste of the available storage space. In this paper we address this issue by developing theory towards code existence and design over a given field. This is done via exploiting recently established connections between linear locally repairable codes and matroids, and using matroid-theoretic characterisations of linearity over small fields. In particular, nonexistence can be shown by finding certain forbidden uniform minors within the lattice of cyclic flats. It is shown that the lattice of cyclic flats of binary matroids have additional structure that significantly restricts the possible locality properties of F2\mathbb{F}_{2}-linear storage codes. Moreover, a collection of criteria for detecting uniform minors from the lattice of cyclic flats of a given matroid is given, which is interesting in its own right.Comment: 14 pages, 2 figure
    corecore