1,546 research outputs found

    On Varieties of Automata Enriched with an Algebraic Structure (Extended Abstract)

    Full text link
    Eilenberg correspondence, based on the concept of syntactic monoids, relates varieties of regular languages with pseudovarieties of finite monoids. Various modifications of this correspondence related more general classes of regular languages with classes of more complex algebraic objects. Such generalized varieties also have natural counterparts formed by classes of finite automata equipped with a certain additional algebraic structure. In this survey, we overview several variants of such varieties of enriched automata.Comment: In Proceedings AFL 2014, arXiv:1405.527

    COMPUTER SIMULATION AND COMPUTABILITY OF BIOLOGICAL SYSTEMS

    Get PDF
    The ability to simulate a biological organism by employing a computer is related to the ability of the computer to calculate the behavior of such a dynamical system, or the "computability" of the system.* However, the two questions of computability and simulation are not equivalent. Since the question of computability can be given a precise answer in terms of recursive functions, automata theory and dynamical systems, it will be appropriate to consider it first. The more elusive question of adequate simulation of biological systems by a computer will be then addressed and a possible connection between the two answers given will be considered. A conjecture is formulated that suggests the possibility of employing an algebraic-topological, "quantum" computer (Baianu, 1971b) for analogous and symbolic simulations of biological systems that may include chaotic processes that are not, in genral, either recursively or digitally computable. Depending on the biological network being modelled, such as the Human Genome/Cell Interactome or a trillion-cell Cognitive Neural Network system, the appropriate logical structure for such simulations might be either the Quantum MV-Logic (QMV) discussed in recent publications (Chiara, 2004, and references cited therein)or Lukasiewicz Logic Algebras that were shown to be isomorphic to MV-logic algebras (Georgescu et al, 2001)

    More Than 1700 Years of Word Equations

    Full text link
    Geometry and Diophantine equations have been ever-present in mathematics. Diophantus of Alexandria was born in the 3rd century (as far as we know), but a systematic mathematical study of word equations began only in the 20th century. So, the title of the present article does not seem to be justified at all. However, a linear Diophantine equation can be viewed as a special case of a system of word equations over a unary alphabet, and, more importantly, a word equation can be viewed as a special case of a Diophantine equation. Hence, the problem WordEquations: "Is a given word equation solvable?" is intimately related to Hilbert's 10th problem on the solvability of Diophantine equations. This became clear to the Russian school of mathematics at the latest in the mid 1960s, after which a systematic study of that relation began. Here, we review some recent developments which led to an amazingly simple decision procedure for WordEquations, and to the description of the set of all solutions as an EDT0L language.Comment: The paper will appear as an invited address in the LNCS proceedings of CAI 2015, Stuttgart, Germany, September 1 - 4, 201

    The Algebraic View of Computation

    Full text link
    We argue that computation is an abstract algebraic concept, and a computer is a result of a morphism (a structure preserving map) from a finite universal semigroup.Comment: 13 pages, final version will be published elsewher

    On the logical definability of certain graph and poset languages

    Full text link
    We show that it is equivalent, for certain sets of finite graphs, to be definable in CMS (counting monadic second-order logic, a natural extension of monadic second-order logic), and to be recognizable in an algebraic framework induced by the notion of modular decomposition of a finite graph. More precisely, we consider the set F_∞F\_\infty of composition operations on graphs which occur in the modular decomposition of finite graphs. If FF is a subset of F_∞F\_{\infty}, we say that a graph is an \calF-graph if it can be decomposed using only operations in FF. A set of FF-graphs is recognizable if it is a union of classes in a finite-index equivalence relation which is preserved by the operations in FF. We show that if FF is finite and its elements enjoy only a limited amount of commutativity -- a property which we call weak rigidity, then recognizability is equivalent to CMS-definability. This requirement is weak enough to be satisfied whenever all FF-graphs are posets, that is, transitive dags. In particular, our result generalizes Kuske's recent result on series-parallel poset languages

    On Varieties of Ordered Automata

    Full text link
    The Eilenberg correspondence relates varieties of regular languages to pseudovarieties of finite monoids. Various modifications of this correspondence have been found with more general classes of regular languages on one hand and classes of more complex algebraic structures on the other hand. It is also possible to consider classes of automata instead of algebraic structures as a natural counterpart of classes of languages. Here we deal with the correspondence relating positive C\mathcal C-varieties of languages to positive C\mathcal C-varieties of ordered automata and we present various specific instances of this correspondence. These bring certain well-known results from a new perspective and also some new observations. Moreover, complexity aspects of the membership problem are discussed both in the particular examples and in a general setting

    Polychronous Interpretation of Synoptic, a Domain Specific Modeling Language for Embedded Flight-Software

    Get PDF
    The SPaCIFY project, which aims at bringing advances in MDE to the satellite flight software industry, advocates a top-down approach built on a domain-specific modeling language named Synoptic. In line with previous approaches to real-time modeling such as Statecharts and Simulink, Synoptic features hierarchical decomposition of application and control modules in synchronous block diagrams and state machines. Its semantics is described in the polychronous model of computation, which is that of the synchronous language Signal.Comment: Workshop on Formal Methods for Aerospace (FMA 2009
    • 

    corecore